mirror of
https://github.com/kristoferssolo/Quantum-Computation-Cheatsheet.git
synced 2025-10-21 19:50:34 +00:00
feat: add multi-qubit systems
This commit is contained in:
parent
8750ea2766
commit
c07d70c080
94
main.typ
94
main.typ
@ -10,6 +10,7 @@
|
|||||||
))
|
))
|
||||||
|
|
||||||
#let distance = $space.quad space.quad$
|
#let distance = $space.quad space.quad$
|
||||||
|
#let tensor = $lr(times.circle)$
|
||||||
|
|
||||||
= Bre-Ket Notation
|
= Bre-Ket Notation
|
||||||
== Ket $ket(psi)$
|
== Ket $ket(psi)$
|
||||||
@ -92,7 +93,7 @@ $
|
|||||||
P(-)=abs(braket(-, 1))^2=1/2
|
P(-)=abs(braket(-, 1))^2=1/2
|
||||||
$
|
$
|
||||||
|
|
||||||
=== Example: $ket(psi)=(1+2i)/sqrt(7)ket(0)+(1-i)/sqrt(7)ket(1)$
|
==== Example: $ket(psi)=(1+2i)/sqrt(7)ket(0)+(1-i)/sqrt(7)ket(1)$
|
||||||
$
|
$
|
||||||
P(0) & =abs((1+2i)/sqrt(7))^2=(1^2+2^2)/7=5/7 \
|
P(0) & =abs((1+2i)/sqrt(7))^2=(1^2+2^2)/7=5/7 \
|
||||||
P(1) & =abs((1-i)/sqrt(7))^2=(1^2+(-1)^2)/7=2/7
|
P(1) & =abs((1-i)/sqrt(7))^2=(1^2+(-1)^2)/7=2/7
|
||||||
@ -227,3 +228,94 @@ $
|
|||||||
U ket(1) = ket(0)
|
U ket(1) = ket(0)
|
||||||
)
|
)
|
||||||
$
|
$
|
||||||
|
|
||||||
|
= Multi-Qubit Systems
|
||||||
|
== Tensor product
|
||||||
|
Combines state space.
|
||||||
|
|
||||||
|
$
|
||||||
|
(a ket(0)+b ket(1)) tensor (c ket(0) + d ket(1)) = \ =
|
||||||
|
a c ket(00)+ a d ket(01) + b c ket(10) + b d ket(11)
|
||||||
|
$
|
||||||
|
|
||||||
|
For $k$ qubits, $2^k$ basis states.
|
||||||
|
|
||||||
|
=== Operators
|
||||||
|
$
|
||||||
|
(A tensor B)
|
||||||
|
(ket(psi_A) tensor ket(psi_B))=
|
||||||
|
(A ket(psi_A)) tensor (B ket(psi_B))
|
||||||
|
$
|
||||||
|
|
||||||
|
== Product States vs. Entangled States
|
||||||
|
|
||||||
|
=== Product state
|
||||||
|
Can be written as $ket(psi_A)tensor ket(psi_B)$.
|
||||||
|
|
||||||
|
==== Example
|
||||||
|
$
|
||||||
|
1/2(ket(00)+ket(01)+ket(10)+ket(11))= \ =
|
||||||
|
(1/sqrt(2)(ket(0)+ket(1))) tensor (1/sqrt(2)(ket(0)+ket(1)))
|
||||||
|
$
|
||||||
|
=== Entangled States
|
||||||
|
Cannot be factored
|
||||||
|
==== Example
|
||||||
|
$
|
||||||
|
1/sqrt(2)(ket(00)+ket(11)) ("Bell state" ket(Phi^+))
|
||||||
|
$
|
||||||
|
|
||||||
|
== Multi-Qubit Measurement & Normalization
|
||||||
|
Measure one qubit from a multi-qubit system.
|
||||||
|
==== Example
|
||||||
|
===== State
|
||||||
|
$
|
||||||
|
a ket(00)+b ket(01) + c ket(10) + d ket(11)
|
||||||
|
$
|
||||||
|
===== Measure 1st qubit
|
||||||
|
====== Prob of $0$
|
||||||
|
$
|
||||||
|
P(q_1=0)=abs(a)^2+abs(b)^2
|
||||||
|
$
|
||||||
|
Post-measurement state:
|
||||||
|
$
|
||||||
|
(a ket(00)+ b ket(01))/sqrt(abs(a)^2+abs(b)^2)=
|
||||||
|
ket(0) tensor
|
||||||
|
(a ket(0) + b ket(1))/(sqrt(abs(a)^2+abs(b)^2))
|
||||||
|
$
|
||||||
|
|
||||||
|
====== Prob of $1$
|
||||||
|
$
|
||||||
|
P(q_1=1)=abs(c)^2+abs(d)^2
|
||||||
|
$
|
||||||
|
Post-measurement state:
|
||||||
|
$
|
||||||
|
(c ket(10)+ d ket(11))/sqrt(abs(c)^2+abs(d)^2)=
|
||||||
|
ket(1) tensor
|
||||||
|
(c ket(0) + d ket(1))/(sqrt(abs(c)^2+abs(d)^2))
|
||||||
|
$
|
||||||
|
==== Example
|
||||||
|
===== State
|
||||||
|
$
|
||||||
|
2/3 ket(00)+1/3 ket(01)+2/3 ket(10)
|
||||||
|
$
|
||||||
|
===== Measure 1st qubit
|
||||||
|
====== Prob of $0$
|
||||||
|
$
|
||||||
|
P(0)=(2/3)^2+(1/3)^2=5/9
|
||||||
|
$
|
||||||
|
State of 2nd qubit:
|
||||||
|
$
|
||||||
|
(2/3 ket(0) + 1/3 ket(1))/sqrt(5/9)=
|
||||||
|
1/sqrt(5)(2 ket(0) + ket(1))
|
||||||
|
$
|
||||||
|
|
||||||
|
====== Prob of $1$
|
||||||
|
$
|
||||||
|
P(1)=(2/3)^2=4/9
|
||||||
|
$
|
||||||
|
State of 2nd qubit:
|
||||||
|
$
|
||||||
|
(2/3 ket(0))/sqrt(4/9)=
|
||||||
|
ket(0)
|
||||||
|
$
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user