diff --git a/main.typ b/main.typ index a1839aa..9f08277 100644 --- a/main.typ +++ b/main.typ @@ -10,6 +10,7 @@ )) #let distance = $space.quad space.quad$ +#let tensor = $lr(times.circle)$ = Bre-Ket Notation == Ket $ket(psi)$ @@ -92,7 +93,7 @@ $ P(-)=abs(braket(-, 1))^2=1/2 $ -=== Example: $ket(psi)=(1+2i)/sqrt(7)ket(0)+(1-i)/sqrt(7)ket(1)$ +==== Example: $ket(psi)=(1+2i)/sqrt(7)ket(0)+(1-i)/sqrt(7)ket(1)$ $ P(0) & =abs((1+2i)/sqrt(7))^2=(1^2+2^2)/7=5/7 \ P(1) & =abs((1-i)/sqrt(7))^2=(1^2+(-1)^2)/7=2/7 @@ -227,3 +228,94 @@ $ U ket(1) = ket(0) ) $ + += Multi-Qubit Systems +== Tensor product +Combines state space. + +$ + (a ket(0)+b ket(1)) tensor (c ket(0) + d ket(1)) = \ = + a c ket(00)+ a d ket(01) + b c ket(10) + b d ket(11) +$ + +For $k$ qubits, $2^k$ basis states. + +=== Operators +$ + (A tensor B) + (ket(psi_A) tensor ket(psi_B))= + (A ket(psi_A)) tensor (B ket(psi_B)) +$ + +== Product States vs. Entangled States + +=== Product state +Can be written as $ket(psi_A)tensor ket(psi_B)$. + +==== Example +$ + 1/2(ket(00)+ket(01)+ket(10)+ket(11))= \ = + (1/sqrt(2)(ket(0)+ket(1))) tensor (1/sqrt(2)(ket(0)+ket(1))) +$ +=== Entangled States +Cannot be factored +==== Example +$ + 1/sqrt(2)(ket(00)+ket(11)) ("Bell state" ket(Phi^+)) +$ + +== Multi-Qubit Measurement & Normalization +Measure one qubit from a multi-qubit system. +==== Example +===== State +$ + a ket(00)+b ket(01) + c ket(10) + d ket(11) +$ +===== Measure 1st qubit +====== Prob of $0$ +$ + P(q_1=0)=abs(a)^2+abs(b)^2 +$ +Post-measurement state: +$ + (a ket(00)+ b ket(01))/sqrt(abs(a)^2+abs(b)^2)= + ket(0) tensor + (a ket(0) + b ket(1))/(sqrt(abs(a)^2+abs(b)^2)) +$ + +====== Prob of $1$ +$ + P(q_1=1)=abs(c)^2+abs(d)^2 +$ +Post-measurement state: +$ + (c ket(10)+ d ket(11))/sqrt(abs(c)^2+abs(d)^2)= + ket(1) tensor + (c ket(0) + d ket(1))/(sqrt(abs(c)^2+abs(d)^2)) +$ +==== Example +===== State +$ + 2/3 ket(00)+1/3 ket(01)+2/3 ket(10) +$ +===== Measure 1st qubit +====== Prob of $0$ +$ + P(0)=(2/3)^2+(1/3)^2=5/9 +$ +State of 2nd qubit: +$ + (2/3 ket(0) + 1/3 ket(1))/sqrt(5/9)= + 1/sqrt(5)(2 ket(0) + ket(1)) +$ + +====== Prob of $1$ +$ + P(1)=(2/3)^2=4/9 +$ +State of 2nd qubit: +$ + (2/3 ket(0))/sqrt(4/9)= + ket(0) +$ +