feat: add qubit transformations

This commit is contained in:
Kristofers Solo 2025-06-05 17:13:04 +03:00
parent 5a7ea7b9b9
commit 8750ea2766
Signed by: kristoferssolo
GPG Key ID: 8687F2D3EEE6F0ED
2 changed files with 133 additions and 0 deletions

View File

@ -48,6 +48,8 @@
// Formatting for regular text
set par(justify: true, leading: 1em)
show heading: set block(spacing: 0.7em)
show heading: set text(size: 14pt)
show heading: set par(justify: false)
set terms(separator: [ -- ])

131
main.typ
View File

@ -9,6 +9,8 @@
"Kristofers Solo",
))
#let distance = $space.quad space.quad$
= Bre-Ket Notation
== Ket $ket(psi)$
Represents a column vector for a quantum state.
@ -96,3 +98,132 @@ $
P(1) & =abs((1-i)/sqrt(7))^2=(1^2+(-1)^2)/7=2/7
$
#tip[ Sum must be $1$. ]
= Single Qubit Unitary Transformations
Quantum gates are unitary matrices $U$.
$ U U^dagger=U^dagger U=I $
=== Properties
Linearity
$(U(alpha ket(psi_1)+beta ket(psi_2))=alpha U ket(psi_1)+beta U ket(psi_2))$
and preserves vector length.
=== Matix form
If $U ket(0)=a ket(0)+b ket(1))$ and $U ket(1)=c ket(0) + d ket(1)$, then
$ U=mat(a, c; b, d) $
Columns (and rows) must be orthonormal vectors: \
$arrow(v_1^*) dot arrow(v_2)=0$ and $abs(arrow(v_1))^2=1$.
== Pauli Gates
=== I (Identity)
$
I=mat(1, 0; 0, 1) distance
cases(
I ket(0)=ket(0),
I ket(1)=ket(1)
)
$
=== X (NOT)
Bit flip
$
X=mat(0, 1; 1, 0) distance
cases(
X ket(0)=ket(1),
X ket(1)=ket(0)
)
$
=== Y Gate
$
Y=mat(0, -i; i, 0) distance
cases(
Y ket(0)=-i ket(1),
Y ket(1)=i ket(0)
)
$
=== Z Gate
Phase flip
$
Z=mat(1, 0; 0, -1) distance
cases(
Z ket(0) = ket(0),
Z ket(1) = -ket(1),
)
$
== Hadamard Gate ($H$)
Creates superpositions
$
H=1/sqrt(2) mat(1, 1; 1, -1) distance
cases(
H ket(0)=1/sqrt(2) ket(0) + 1/sqrt(2) ket(1),
H ket(-1)=1/sqrt(2) ket(0) - 1/sqrt(2) ket(1)
) \
cases(
H ket(0)=ket(+),
H ket(1)=ket(-)
) distance
H H=H^2=I
$
== Phase Gates
=== $S$ Gate $(sqrt(Z))$
$ S= mat(1, 0; 0, i) distance S^2=Z $
=== $T$ Gate $(pi/8))$
$ T= mat(1, 0; 0, e^(i pi/4)) distance T^2=S $
== Rotation Gates ($R_n (theta)$)
$
R_x (theta)=
e^((-i theta X)/2)=
mat(
cos theta/2, -i sin theta/2;
-i sin theta/2, cos theta/2
)
$
$
R_y (theta)=
e^((-i theta Y)/2)=
mat(
cos theta/2, -sin theta/2;
sin theta/2, cos theta/2
)
$
$
R_z (theta)=
e^((-i theta Z)/2)=
mat(
e^((-i theta)/2), 0
0, e^((i theta)/2)
)
$
#tip[
$R_alpha: cases(
R_alpha ket(0):cos alpha ket(0)+sin alpha ket(1),
R_alpha ket(1):-sin alpha ket(0)+cos alpha ket(1),
)$. This is $R_y(-2 alpha)$.]
== Game Compositions
Applied right to left. $U V ket(psi)=U(V ket(psi))$.
- $H Z H=X$
- $H X H=Z$
== Inverse Tranformation
$ U^(-1)=U^dagger $
== Non-Unitary Operations
(Not physically realizable as closed system evolution)
=== Qubit Deletion
$
cases(
U ket(0) = ket(0),
U ket(1) = ket(0)
)
$