mirror of
https://github.com/kristoferssolo/Quantum-Computation-Cheatsheet.git
synced 2025-10-21 19:50:34 +00:00
feat: add qubit transformations
This commit is contained in:
parent
5a7ea7b9b9
commit
8750ea2766
@ -48,6 +48,8 @@
|
||||
// Formatting for regular text
|
||||
set par(justify: true, leading: 1em)
|
||||
show heading: set block(spacing: 0.7em)
|
||||
show heading: set text(size: 14pt)
|
||||
show heading: set par(justify: false)
|
||||
|
||||
set terms(separator: [ -- ])
|
||||
|
||||
|
||||
131
main.typ
131
main.typ
@ -9,6 +9,8 @@
|
||||
"Kristofers Solo",
|
||||
))
|
||||
|
||||
#let distance = $space.quad space.quad$
|
||||
|
||||
= Bre-Ket Notation
|
||||
== Ket $ket(psi)$
|
||||
Represents a column vector for a quantum state.
|
||||
@ -96,3 +98,132 @@ $
|
||||
P(1) & =abs((1-i)/sqrt(7))^2=(1^2+(-1)^2)/7=2/7
|
||||
$
|
||||
#tip[ Sum must be $1$. ]
|
||||
|
||||
= Single Qubit Unitary Transformations
|
||||
Quantum gates are unitary matrices $U$.
|
||||
$ U U^dagger=U^dagger U=I $
|
||||
=== Properties
|
||||
|
||||
Linearity
|
||||
$(U(alpha ket(psi_1)+beta ket(psi_2))=alpha U ket(psi_1)+beta U ket(psi_2))$
|
||||
and preserves vector length.
|
||||
=== Matix form
|
||||
If $U ket(0)=a ket(0)+b ket(1))$ and $U ket(1)=c ket(0) + d ket(1)$, then
|
||||
$ U=mat(a, c; b, d) $
|
||||
|
||||
Columns (and rows) must be orthonormal vectors: \
|
||||
$arrow(v_1^*) dot arrow(v_2)=0$ and $abs(arrow(v_1))^2=1$.
|
||||
|
||||
== Pauli Gates
|
||||
=== I (Identity)
|
||||
$
|
||||
I=mat(1, 0; 0, 1) distance
|
||||
cases(
|
||||
I ket(0)=ket(0),
|
||||
I ket(1)=ket(1)
|
||||
)
|
||||
$
|
||||
|
||||
=== X (NOT)
|
||||
Bit flip
|
||||
$
|
||||
X=mat(0, 1; 1, 0) distance
|
||||
cases(
|
||||
X ket(0)=ket(1),
|
||||
X ket(1)=ket(0)
|
||||
)
|
||||
$
|
||||
|
||||
=== Y Gate
|
||||
$
|
||||
Y=mat(0, -i; i, 0) distance
|
||||
cases(
|
||||
Y ket(0)=-i ket(1),
|
||||
Y ket(1)=i ket(0)
|
||||
)
|
||||
$
|
||||
|
||||
=== Z Gate
|
||||
Phase flip
|
||||
$
|
||||
Z=mat(1, 0; 0, -1) distance
|
||||
cases(
|
||||
Z ket(0) = ket(0),
|
||||
Z ket(1) = -ket(1),
|
||||
)
|
||||
$
|
||||
|
||||
== Hadamard Gate ($H$)
|
||||
Creates superpositions
|
||||
$
|
||||
H=1/sqrt(2) mat(1, 1; 1, -1) distance
|
||||
cases(
|
||||
H ket(0)=1/sqrt(2) ket(0) + 1/sqrt(2) ket(1),
|
||||
H ket(-1)=1/sqrt(2) ket(0) - 1/sqrt(2) ket(1)
|
||||
) \
|
||||
cases(
|
||||
H ket(0)=ket(+),
|
||||
H ket(1)=ket(-)
|
||||
) distance
|
||||
H H=H^2=I
|
||||
$
|
||||
|
||||
== Phase Gates
|
||||
=== $S$ Gate $(sqrt(Z))$
|
||||
$ S= mat(1, 0; 0, i) distance S^2=Z $
|
||||
|
||||
=== $T$ Gate $(pi/8))$
|
||||
$ T= mat(1, 0; 0, e^(i pi/4)) distance T^2=S $
|
||||
|
||||
== Rotation Gates ($R_n (theta)$)
|
||||
$
|
||||
R_x (theta)=
|
||||
e^((-i theta X)/2)=
|
||||
mat(
|
||||
cos theta/2, -i sin theta/2;
|
||||
-i sin theta/2, cos theta/2
|
||||
)
|
||||
$
|
||||
|
||||
$
|
||||
R_y (theta)=
|
||||
e^((-i theta Y)/2)=
|
||||
mat(
|
||||
cos theta/2, -sin theta/2;
|
||||
sin theta/2, cos theta/2
|
||||
)
|
||||
$
|
||||
|
||||
$
|
||||
R_z (theta)=
|
||||
e^((-i theta Z)/2)=
|
||||
mat(
|
||||
e^((-i theta)/2), 0
|
||||
0, e^((i theta)/2)
|
||||
)
|
||||
$
|
||||
|
||||
#tip[
|
||||
$R_alpha: cases(
|
||||
R_alpha ket(0):cos alpha ket(0)+sin alpha ket(1),
|
||||
R_alpha ket(1):-sin alpha ket(0)+cos alpha ket(1),
|
||||
)$. This is $R_y(-2 alpha)$.]
|
||||
|
||||
== Game Compositions
|
||||
Applied right to left. $U V ket(psi)=U(V ket(psi))$.
|
||||
- $H Z H=X$
|
||||
- $H X H=Z$
|
||||
|
||||
== Inverse Tranformation
|
||||
$ U^(-1)=U^dagger $
|
||||
|
||||
== Non-Unitary Operations
|
||||
(Not physically realizable as closed system evolution)
|
||||
|
||||
=== Qubit Deletion
|
||||
$
|
||||
cases(
|
||||
U ket(0) = ket(0),
|
||||
U ket(1) = ket(0)
|
||||
)
|
||||
$
|
||||
|
||||
Loading…
Reference in New Issue
Block a user