feat(fundamentals): update

This commit is contained in:
Kristofers Solo 2025-06-05 16:21:28 +03:00
parent 30736e6683
commit 5a7ea7b9b9
Signed by: kristoferssolo
GPG Key ID: 8687F2D3EEE6F0ED
3 changed files with 70 additions and 8 deletions

View File

@ -46,7 +46,7 @@
show math.equation: set text(weight: 400)
// Formatting for regular text
set par(justify: true, leading: 1em, first-line-indent: indent, spacing: 1em)
set par(justify: true, leading: 1em)
show heading: set block(spacing: 0.7em)
set terms(separator: [ -- ])
@ -181,7 +181,7 @@
) // TODO: make the same style as LaTeX: 1. | (a) | i. | A.
outline(depth: 3, indent: 1cm, title: text(size: 14pt, "Saturs"))
outline(depth: 3, indent: indent, title: text(size: 14pt, "Saturs"))
body
}

View File

@ -1,10 +1,45 @@
#import "@preview/fletcher:0.5.7" as fletcher: diagram, edge, node
#import "@preview/gentle-clues:1.2.0": *
#import "@preview/physica:0.9.5": bra, braket, ket, ketbra
#import "@preview/quill:0.6.1": *
#import "@preview/quill:0.6.1" as quill: tequila as tq
#import "layout.typ": indent-par, project
#show: project.with(title: [Kvantu skaitļošana], authors: ("Kristofer Solo",))
#show: project.with(title: [Quantum Computation Cheatsheet], authors: (
"Kristofers Solo",
))
= Bre-Ket Notation
== Ket $ket(psi)$
Represents a column vector for a quantum state.
$ ket(psi)=alpha ket(0)+beta ket(1) <==> vec(alpha, beta) $
=== Basis states
$ ket(0)=vec(1, 0), ket(1)=vec(0, 1) $
== Bra $bra(psi)$
Represents a *conjugate transpose vector (kompleksi saistīts)* (row vector) of
$ket(psi)$.
$ "If " ket(psi) = vec(alpha, beta) ", then" ket(psi)=(a^* space.quad b^*) $
== Scalar Product $braket(phi, psi)$
Inner product of two states.
$
"If " ket(phi) = gamma ket(0)+ delta ket(1) ", then"
braket(phi, psi)= gamma^* alpha + delta^* beta
$
=== Orthogonal states
$ braket(phi, psi)=0 $
== Projection $braket(i, psi)$
Amplitude of the basis state $ket(i)$ in $ket(psi)$.
For $ket(psi)=alpha ket(0) + beta ket(1) :
braket(0, psi)=alpha,
psi braket(1, psi)=beta$.
Probability of measuring state $ket(i): P(i)=abs(braket(i, psi))^2$
= Fundamentals
== Qubit (Kvantu bits)
@ -13,7 +48,8 @@ $ ket(0)=vec(1, 0), ket(1)=vec(0, 1) $
=== Superposition
A qubit can be in a linear combination of basis states:
$ket(psi)=alpha ket(0)+ beta ket(1)$, where $alpha, beta in CC$ are probability amplitudes.
$ ket(psi)=alpha ket(0)+ beta ket(1) ", where "alpha, beta in CC $
are probability amplitudes.
=== Normalization
$ abs(alpha)^2 + abs(beta)^2 = 1 $
@ -25,13 +61,38 @@ Geometric representation of a single qubit state:
$ ket(psi)=cos theta/2 ket(0)+ e^(i phi) sin theta/2 ket(1) $
== Measurement (Mērījumi)
- Projective measurement in the computational basis ${ket(0), ket(1)}$.
- Projective measurement in the basis (e.g. computational ${ket(0), ket(1)}$ or
Hadamard ${ket(+), ket(-)}$).
- If state is $ket(psi)=alpha ket(0) + beta ket(1)$:
- Outcome $0$: probability $P(0)=abs(braket(0, psi))^2=abs(alpha)^2$.
Post-measurement state: $ket(0)$.
- Outcome $1$: probability $P(1)=abs(braket(1, psi))^2=abs(beta)^2$.
Post-measurement state: $ket(1)$.
- Measurement collapses the superposition.
- Measurement operators: $M_0=ket(0)bra(0)$, $M_1 = ket(1)bra(1)$.
$sum_m M_m^dagger M_m=I$.
- Measurement collapses the superposition (mērījums maina kvantu bitu (observer effect)).
=== Measurement operators
$
M_0=ket(0)bra(0) ,
M_1 = ket(1)bra(1) \
sum_m M_m^dagger M_m=I
$
=== Measuring in $ket(+), ket(-)$ basis
$
ket(+)=1/sqrt(2)(ket(0)+ket(1)),
ket(-)=1/sqrt(2)(ket(0)-ket(1))
$
To measure $ket(0)$ in this basis: $ket(0)=1/sqrt(+)+1/sqrt(2)ket(-)$.
$
P(+)=abs(braket(+, 0))^2=1/2,
P(-)=abs(braket(-, 1))^2=1/2
$
=== Example: $ket(psi)=(1+2i)/sqrt(7)ket(0)+(1-i)/sqrt(7)ket(1)$
$
P(0) & =abs((1+2i)/sqrt(7))^2=(1^2+2^2)/7=5/7 \
P(1) & =abs((1-i)/sqrt(7))^2=(1^2+(-1)^2)/7=2/7
$
#tip[ Sum must be $1$. ]

View File

@ -1,3 +1,4 @@
#import "@preview/fletcher:0.5.7"
#import "@preview/physica:0.9.5"
#import "@preview/quill:0.6.1"
#import "@preview/gentle-clues:1.2.0"