mirror of
https://github.com/kristoferssolo/Quantum-Computation-Cheatsheet.git
synced 2025-10-21 19:50:34 +00:00
feat(fundamentals): update
This commit is contained in:
parent
30736e6683
commit
5a7ea7b9b9
@ -46,7 +46,7 @@
|
||||
show math.equation: set text(weight: 400)
|
||||
|
||||
// Formatting for regular text
|
||||
set par(justify: true, leading: 1em, first-line-indent: indent, spacing: 1em)
|
||||
set par(justify: true, leading: 1em)
|
||||
show heading: set block(spacing: 0.7em)
|
||||
|
||||
set terms(separator: [ -- ])
|
||||
@ -181,7 +181,7 @@
|
||||
) // TODO: make the same style as LaTeX: 1. | (a) | i. | A.
|
||||
|
||||
|
||||
outline(depth: 3, indent: 1cm, title: text(size: 14pt, "Saturs"))
|
||||
outline(depth: 3, indent: indent, title: text(size: 14pt, "Saturs"))
|
||||
|
||||
body
|
||||
}
|
||||
|
||||
73
main.typ
73
main.typ
@ -1,10 +1,45 @@
|
||||
#import "@preview/fletcher:0.5.7" as fletcher: diagram, edge, node
|
||||
#import "@preview/gentle-clues:1.2.0": *
|
||||
#import "@preview/physica:0.9.5": bra, braket, ket, ketbra
|
||||
#import "@preview/quill:0.6.1": *
|
||||
#import "@preview/quill:0.6.1" as quill: tequila as tq
|
||||
#import "layout.typ": indent-par, project
|
||||
|
||||
#show: project.with(title: [Kvantu skaitļošana], authors: ("Kristofer Solo",))
|
||||
#show: project.with(title: [Quantum Computation Cheatsheet], authors: (
|
||||
"Kristofers Solo",
|
||||
))
|
||||
|
||||
= Bre-Ket Notation
|
||||
== Ket $ket(psi)$
|
||||
Represents a column vector for a quantum state.
|
||||
$ ket(psi)=alpha ket(0)+beta ket(1) <==> vec(alpha, beta) $
|
||||
|
||||
=== Basis states
|
||||
$ ket(0)=vec(1, 0), ket(1)=vec(0, 1) $
|
||||
|
||||
== Bra $bra(psi)$
|
||||
Represents a *conjugate transpose vector (kompleksi saistīts)* (row vector) of
|
||||
$ket(psi)$.
|
||||
$ "If " ket(psi) = vec(alpha, beta) ", then" ket(psi)=(a^* space.quad b^*) $
|
||||
|
||||
== Scalar Product $braket(phi, psi)$
|
||||
Inner product of two states.
|
||||
$
|
||||
"If " ket(phi) = gamma ket(0)+ delta ket(1) ", then"
|
||||
braket(phi, psi)= gamma^* alpha + delta^* beta
|
||||
$
|
||||
|
||||
=== Orthogonal states
|
||||
$ braket(phi, psi)=0 $
|
||||
|
||||
== Projection $braket(i, psi)$
|
||||
Amplitude of the basis state $ket(i)$ in $ket(psi)$.
|
||||
|
||||
For $ket(psi)=alpha ket(0) + beta ket(1) :
|
||||
braket(0, psi)=alpha,
|
||||
psi braket(1, psi)=beta$.
|
||||
|
||||
Probability of measuring state $ket(i): P(i)=abs(braket(i, psi))^2$
|
||||
|
||||
= Fundamentals
|
||||
== Qubit (Kvantu bits)
|
||||
@ -13,7 +48,8 @@ $ ket(0)=vec(1, 0), ket(1)=vec(0, 1) $
|
||||
|
||||
=== Superposition
|
||||
A qubit can be in a linear combination of basis states:
|
||||
$ket(psi)=alpha ket(0)+ beta ket(1)$, where $alpha, beta in CC$ are probability amplitudes.
|
||||
$ ket(psi)=alpha ket(0)+ beta ket(1) ", where "alpha, beta in CC $
|
||||
are probability amplitudes.
|
||||
|
||||
=== Normalization
|
||||
$ abs(alpha)^2 + abs(beta)^2 = 1 $
|
||||
@ -25,13 +61,38 @@ Geometric representation of a single qubit state:
|
||||
$ ket(psi)=cos theta/2 ket(0)+ e^(i phi) sin theta/2 ket(1) $
|
||||
|
||||
== Measurement (Mērījumi)
|
||||
- Projective measurement in the computational basis ${ket(0), ket(1)}$.
|
||||
- Projective measurement in the basis (e.g. computational ${ket(0), ket(1)}$ or
|
||||
Hadamard ${ket(+), ket(-)}$).
|
||||
|
||||
- If state is $ket(psi)=alpha ket(0) + beta ket(1)$:
|
||||
- Outcome $0$: probability $P(0)=abs(braket(0, psi))^2=abs(alpha)^2$.
|
||||
Post-measurement state: $ket(0)$.
|
||||
- Outcome $1$: probability $P(1)=abs(braket(1, psi))^2=abs(beta)^2$.
|
||||
Post-measurement state: $ket(1)$.
|
||||
- Measurement collapses the superposition.
|
||||
- Measurement operators: $M_0=ket(0)bra(0)$, $M_1 = ket(1)bra(1)$.
|
||||
$sum_m M_m^dagger M_m=I$.
|
||||
- Measurement collapses the superposition (mērījums maina kvantu bitu (observer effect)).
|
||||
|
||||
=== Measurement operators
|
||||
$
|
||||
M_0=ket(0)bra(0) ,
|
||||
M_1 = ket(1)bra(1) \
|
||||
sum_m M_m^dagger M_m=I
|
||||
$
|
||||
|
||||
=== Measuring in $ket(+), ket(-)$ basis
|
||||
$
|
||||
ket(+)=1/sqrt(2)(ket(0)+ket(1)),
|
||||
ket(-)=1/sqrt(2)(ket(0)-ket(1))
|
||||
$
|
||||
|
||||
To measure $ket(0)$ in this basis: $ket(0)=1/sqrt(+)+1/sqrt(2)ket(-)$.
|
||||
$
|
||||
P(+)=abs(braket(+, 0))^2=1/2,
|
||||
P(-)=abs(braket(-, 1))^2=1/2
|
||||
$
|
||||
|
||||
=== Example: $ket(psi)=(1+2i)/sqrt(7)ket(0)+(1-i)/sqrt(7)ket(1)$
|
||||
$
|
||||
P(0) & =abs((1+2i)/sqrt(7))^2=(1^2+2^2)/7=5/7 \
|
||||
P(1) & =abs((1-i)/sqrt(7))^2=(1^2+(-1)^2)/7=2/7
|
||||
$
|
||||
#tip[ Sum must be $1$. ]
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
#import "@preview/fletcher:0.5.7"
|
||||
#import "@preview/physica:0.9.5"
|
||||
#import "@preview/quill:0.6.1"
|
||||
#import "@preview/gentle-clues:1.2.0"
|
||||
|
||||
Loading…
Reference in New Issue
Block a user