mirror of
https://github.com/kristoferssolo/Quantum-Computation-Cheatsheet.git
synced 2025-10-21 19:50:34 +00:00
feat(fundamentals): add fundamentals
This commit is contained in:
parent
dfb086e03b
commit
30736e6683
13
layout.typ
13
layout.typ
@ -47,21 +47,12 @@
|
||||
|
||||
// Formatting for regular text
|
||||
set par(justify: true, leading: 1em, first-line-indent: indent, spacing: 1em)
|
||||
show heading: set block(spacing: 1.5em)
|
||||
show heading: set block(spacing: 0.7em)
|
||||
|
||||
set terms(separator: [ -- ])
|
||||
|
||||
// Headings
|
||||
set heading(numbering: "1.1.")
|
||||
show heading: it => {
|
||||
if it.level == 1 {
|
||||
text(12pt, align(center, upper(it)))
|
||||
} else {
|
||||
text(12pt, it)
|
||||
}
|
||||
""
|
||||
v(-1cm)
|
||||
}
|
||||
|
||||
// Start page numbering
|
||||
set page(numbering: "1", number-align: center)
|
||||
@ -190,7 +181,7 @@
|
||||
) // TODO: make the same style as LaTeX: 1. | (a) | i. | A.
|
||||
|
||||
|
||||
outline(depth: 3, indent: 1cm, title: text(size: 14pt, "SATURS"))
|
||||
outline(depth: 3, indent: 1cm, title: text(size: 14pt, "Saturs"))
|
||||
|
||||
body
|
||||
}
|
||||
|
||||
30
main.typ
30
main.typ
@ -5,3 +5,33 @@
|
||||
#import "layout.typ": indent-par, project
|
||||
|
||||
#show: project.with(title: [Kvantu skaitļošana], authors: ("Kristofer Solo",))
|
||||
|
||||
= Fundamentals
|
||||
== Qubit (Kvantu bits)
|
||||
=== Basis states
|
||||
$ ket(0)=vec(1, 0), ket(1)=vec(0, 1) $
|
||||
|
||||
=== Superposition
|
||||
A qubit can be in a linear combination of basis states:
|
||||
$ket(psi)=alpha ket(0)+ beta ket(1)$, where $alpha, beta in CC$ are probability amplitudes.
|
||||
|
||||
=== Normalization
|
||||
$ abs(alpha)^2 + abs(beta)^2 = 1 $
|
||||
$abs(alpha)^2$ is the probability of measuring $ket(0)$, $abs(beta)^2$ is the
|
||||
probability of measuring $ket(1)$.
|
||||
|
||||
=== Bloch Sphere
|
||||
Geometric representation of a single qubit state:
|
||||
$ ket(psi)=cos theta/2 ket(0)+ e^(i phi) sin theta/2 ket(1) $
|
||||
|
||||
== Measurement (Mērījumi)
|
||||
- Projective measurement in the computational basis ${ket(0), ket(1)}$.
|
||||
|
||||
- If state is $ket(psi)=alpha ket(0) + beta ket(1)$:
|
||||
- Outcome $0$: probability $P(0)=abs(braket(0, psi))^2=abs(alpha)^2$.
|
||||
Post-measurement state: $ket(0)$.
|
||||
- Outcome $1$: probability $P(1)=abs(braket(1, psi))^2=abs(beta)^2$.
|
||||
Post-measurement state: $ket(1)$.
|
||||
- Measurement collapses the superposition.
|
||||
- Measurement operators: $M_0=ket(0)bra(0)$, $M_1 = ket(1)bra(1)$.
|
||||
$sum_m M_m^dagger M_m=I$.
|
||||
|
||||
Loading…
Reference in New Issue
Block a user