From 30736e668338d6c81fac1cd16fbc1b4b45f81075 Mon Sep 17 00:00:00 2001 From: Kristofers Solo Date: Wed, 4 Jun 2025 16:00:17 +0300 Subject: [PATCH] feat(fundamentals): add fundamentals --- layout.typ | 13 ++----------- main.typ | 30 ++++++++++++++++++++++++++++++ 2 files changed, 32 insertions(+), 11 deletions(-) diff --git a/layout.typ b/layout.typ index 07e6e0e..2f0e68b 100644 --- a/layout.typ +++ b/layout.typ @@ -47,21 +47,12 @@ // Formatting for regular text set par(justify: true, leading: 1em, first-line-indent: indent, spacing: 1em) - show heading: set block(spacing: 1.5em) + show heading: set block(spacing: 0.7em) set terms(separator: [ -- ]) // Headings set heading(numbering: "1.1.") - show heading: it => { - if it.level == 1 { - text(12pt, align(center, upper(it))) - } else { - text(12pt, it) - } - "" - v(-1cm) - } // Start page numbering set page(numbering: "1", number-align: center) @@ -190,7 +181,7 @@ ) // TODO: make the same style as LaTeX: 1. | (a) | i. | A. - outline(depth: 3, indent: 1cm, title: text(size: 14pt, "SATURS")) + outline(depth: 3, indent: 1cm, title: text(size: 14pt, "Saturs")) body } diff --git a/main.typ b/main.typ index e0ad9f6..be005d4 100644 --- a/main.typ +++ b/main.typ @@ -5,3 +5,33 @@ #import "layout.typ": indent-par, project #show: project.with(title: [Kvantu skaitļošana], authors: ("Kristofer Solo",)) + += Fundamentals +== Qubit (Kvantu bits) +=== Basis states +$ ket(0)=vec(1, 0), ket(1)=vec(0, 1) $ + +=== Superposition +A qubit can be in a linear combination of basis states: +$ket(psi)=alpha ket(0)+ beta ket(1)$, where $alpha, beta in CC$ are probability amplitudes. + +=== Normalization +$ abs(alpha)^2 + abs(beta)^2 = 1 $ +$abs(alpha)^2$ is the probability of measuring $ket(0)$, $abs(beta)^2$ is the +probability of measuring $ket(1)$. + +=== Bloch Sphere +Geometric representation of a single qubit state: +$ ket(psi)=cos theta/2 ket(0)+ e^(i phi) sin theta/2 ket(1) $ + +== Measurement (Mērījumi) +- Projective measurement in the computational basis ${ket(0), ket(1)}$. + +- If state is $ket(psi)=alpha ket(0) + beta ket(1)$: + - Outcome $0$: probability $P(0)=abs(braket(0, psi))^2=abs(alpha)^2$. + Post-measurement state: $ket(0)$. + - Outcome $1$: probability $P(1)=abs(braket(1, psi))^2=abs(beta)^2$. + Post-measurement state: $ket(1)$. +- Measurement collapses the superposition. +- Measurement operators: $M_0=ket(0)bra(0)$, $M_1 = ket(1)bra(1)$. + $sum_m M_m^dagger M_m=I$.