mirror of
https://github.com/kristoferssolo/Quantum-Computation-Cheatsheet.git
synced 2025-10-21 19:50:34 +00:00
feat: add diagrams
This commit is contained in:
parent
c37a749776
commit
817fe323f0
40
main.typ
40
main.typ
@ -17,7 +17,7 @@
|
||||
#let CU = $lr(C-U)$
|
||||
#let QFT = $lr(Q F T)$
|
||||
|
||||
= Bre-Ket Notation
|
||||
= Bra-Ket Notation
|
||||
== Ket $ket(psi)$
|
||||
Represents a column vector for a quantum state.
|
||||
$ ket(psi)=alpha ket(0)+beta ket(1) <==> vec(alpha, beta) $
|
||||
@ -107,7 +107,10 @@ $
|
||||
|
||||
= Single Qubit Unitary Transformations
|
||||
Quantum gates are unitary matrices $U$.
|
||||
$ U U^dagger=U^dagger U=I $
|
||||
- Unitary condition: $U U^dagger=U^dagger U=I$, where $U^dagger$ is the
|
||||
conjugate transpose.
|
||||
- Action on state $ket(psi')=U ket(psi)$
|
||||
|
||||
=== Properties
|
||||
|
||||
Linearity
|
||||
@ -132,6 +135,7 @@ $
|
||||
|
||||
=== X (NOT)
|
||||
Bit flip
|
||||
#figure(quantum-circuit(..tq.build(tq.x(0))))
|
||||
$
|
||||
X=mat(0, 1; 1, 0) distance
|
||||
cases(
|
||||
@ -141,6 +145,7 @@ $
|
||||
$
|
||||
|
||||
=== Y Gate
|
||||
#figure(quantum-circuit(..tq.build(tq.y(0))))
|
||||
$
|
||||
Y=mat(0, -i; i, 0) distance
|
||||
cases(
|
||||
@ -151,6 +156,7 @@ $
|
||||
|
||||
=== Z Gate
|
||||
Phase flip
|
||||
#figure(quantum-circuit(..tq.build(tq.z(0))))
|
||||
$
|
||||
Z=mat(1, 0; 0, -1) distance
|
||||
cases(
|
||||
@ -161,6 +167,7 @@ $
|
||||
|
||||
== Hadamard Gate ($H$)
|
||||
Creates superpositions
|
||||
#figure(quantum-circuit(..tq.build(tq.h(0))))
|
||||
$
|
||||
H=1/sqrt(2) mat(1, 1; 1, -1) distance
|
||||
cases(
|
||||
@ -174,14 +181,18 @@ $
|
||||
H H=H^2=I
|
||||
$
|
||||
|
||||
|
||||
== Phase Gates
|
||||
=== $S$ Gate $(sqrt(Z))$
|
||||
#figure(quantum-circuit(..tq.build(tq.s(0))))
|
||||
$ S= mat(1, 0; 0, i) distance S^2=Z $
|
||||
|
||||
=== $T$ Gate $(pi/8))$
|
||||
#figure(quantum-circuit(..tq.build(tq.t(0))))
|
||||
$ T= mat(1, 0; 0, e^(i pi/4)) distance T^2=S $
|
||||
|
||||
== Rotation Gates ($R_n (theta)$)
|
||||
#figure(quantum-circuit(..tq.build(tq.rx($theta$, 0))))
|
||||
$
|
||||
R_x (theta)=
|
||||
e^((-i theta X)/2)=
|
||||
@ -191,6 +202,7 @@ $
|
||||
)
|
||||
$
|
||||
|
||||
#figure(quantum-circuit(..tq.build(tq.ry($theta$, 0))))
|
||||
$
|
||||
R_y (theta)=
|
||||
e^((-i theta Y)/2)=
|
||||
@ -200,6 +212,7 @@ $
|
||||
)
|
||||
$
|
||||
|
||||
#figure(quantum-circuit(..tq.build(tq.rz($theta$, 0))))
|
||||
$
|
||||
R_z (theta)=
|
||||
e^((-i theta Z)/2)=
|
||||
@ -264,11 +277,24 @@ $
|
||||
$
|
||||
=== Entangled States
|
||||
Cannot be factored
|
||||
|
||||
==== Example
|
||||
$
|
||||
1/sqrt(2)(ket(00)+ket(11)) ("Bell state" ket(Phi^+))
|
||||
$
|
||||
|
||||
#figure(quantum-circuit(
|
||||
lstick($ket(0)$),
|
||||
gate($H$),
|
||||
ctrl(1),
|
||||
1,
|
||||
[\ ],
|
||||
lstick($ket(0)$),
|
||||
1,
|
||||
targ(),
|
||||
1,
|
||||
))
|
||||
|
||||
== Multi-Qubit Measurement & Normalization
|
||||
Measure one qubit from a multi-qubit system.
|
||||
==== Example
|
||||
@ -333,7 +359,11 @@ $ CNOT ket(c) ket(t)=ket(c)ket(t tensor c) $
|
||||
|
||||
=== $SWAP$ Gate
|
||||
Swaps two qubits.
|
||||
#figure(quantum-circuit(..tq.build(tq.swap(0, 1))))
|
||||
#figure([
|
||||
#quantum-circuit(..tq.build(tq.swap(0, 1)))
|
||||
or
|
||||
#quantum-circuit(..tq.build(tq.cx(0, 1), tq.cx(1, 0), tq.cx(0, 1)))
|
||||
])
|
||||
|
||||
=== Toffoli Gate ($CCNOT$)
|
||||
$ CCNOT ket(c_1 c_2 t)=ket(c_1 c_2 t tensor (c_1 dot c_2)) $
|
||||
@ -483,6 +513,10 @@ $
|
||||
(where $N=p q$, period $p$), then
|
||||
$ QFT_N ket(psi)=1/sqrt(p) sum_(k=0)^(p-1) c_k ket(k dot N/p) $ (Output is
|
||||
superposition of multiples of $N/p$).
|
||||
|
||||
|
||||
#figure(quantum-circuit(..tq.qft(3)))
|
||||
|
||||
== Period Finding (Kvantu algoritms perioda atrašanai)
|
||||
- Problem: Given $f(x) = f(x+r)$, find period $r$. $N$ is size of domain.
|
||||
- Algorithm:
|
||||
|
||||
Loading…
Reference in New Issue
Block a user