mirror of
https://github.com/kristoferssolo/Quantum-Computation-Cheatsheet.git
synced 2025-10-21 19:50:34 +00:00
feat: add advanced topics
This commit is contained in:
parent
716373be8c
commit
c37a749776
59
main.typ
59
main.typ
@ -521,3 +521,62 @@ $
|
||||
+ Measure first register to get string $y$ such that\ $y dot s = 0 (mod 2)$.
|
||||
+ Repeat $n-1$ times to get $n-1$ linearly independent equations for $s$.
|
||||
Solve the system to find $s$.
|
||||
|
||||
= Advanced Topics
|
||||
== Density Matrices (Blīvuma matricas $rho$)
|
||||
- Describes quantum states, including mixed states (statistical ensemble of pure states).
|
||||
- Pure state $ket(psi): rho=ket(psi)bra(psi)$.
|
||||
- Mixed state: $rho = sum_i p_i ket(psi_i)bra(psi_i)$, where $p_i$ are probabilities, $sum p_i = 1$.
|
||||
- Properties:
|
||||
- $T r (rho)=1$.
|
||||
- $rho^dagger=rho$ (Hermitian).
|
||||
- $rho$ is positive semi-definite (eigenvalues $>=0$).
|
||||
- Evolution: $rho'=U rho U^dagger$.
|
||||
- Measurement: Probability of outcome $m: P(m) =T r(M_m^dagger M_m rho)$.
|
||||
Post-measurement state: $(M_m rho M_m^dagger)/(T r (M_m rho M_m^dagger))$
|
||||
- Purity: $T r(rho)^2<=1$. $T r(rho)^2=1$ if $rho$ is a pure state.
|
||||
- Partial Trace ($T r_B$): If $rho_(A B)$ describes system $A B$,
|
||||
$rho_A=T r_B(rho_(A B))$ describes system $A$.
|
||||
|
||||
== Quantum Cryptography
|
||||
=== BB84 Protocol
|
||||
+ Alice chooses random bits and random bases (rectilinear $+$ or diagonal
|
||||
$times$) for each bit.
|
||||
- $0 -->^+ ket(0), 1 -->^+ ket(1)$
|
||||
- $0 -->^times ket(+), 1 -->^times ket(-)$
|
||||
+ Alice sends qubits to Bob.
|
||||
+ Bob chooses random bases to measure each qubit.
|
||||
+ Alice and Bob publicly announce their basis choices.
|
||||
They keep bits where bases matched (sifted key).
|
||||
+ They sacrifice a portion of the sifted key to estimate error rate (detect
|
||||
eavesdropping). If error rate is low, remaining bits form the secret key.
|
||||
|
||||
=== Security
|
||||
Eavesdropping (Eve) introduces errors because she doesn't know Alice's bases and
|
||||
her measurements disturb the states.
|
||||
|
||||
== Quantum Error Correction
|
||||
Protects quantum states from decoherence and errors.
|
||||
|
||||
=== 3-Qubit Bit Flip Code
|
||||
- Encoding: $ket(0)->ket(0_L)=ket(000), ket(1)->ket(1_L)=ket(11)$.
|
||||
- Error detection: Measure stabilizers $Z_1 Z_2$, $Z_2 Z_3$.
|
||||
- Correction: If $Z_1 Z_2$ flips, error on $Q 1$ or $Q 2$.
|
||||
If $Z_2 Z_3$ flips, error on $Q 2$ or $Q 3$.
|
||||
(e.g., if $Z_1 Z_2 = -1$, $Z_2 Z_3 = +1 ==>$ error on $Q 1$, apply $X_1$).
|
||||
|
||||
=== 3-Qubit Phase Flip Code
|
||||
- Encoding: $ket(0)->ket(+_L)=ket(+++)$,\ $ket(1)->ket(-_L)=ket(---)$.
|
||||
(Hadamard basis of bit flip code).
|
||||
- Error detection: Measure stabilizers $X_1 X_2$, $X_2 X_3$.
|
||||
|
||||
=== Shor's 9-Qubit Code
|
||||
Corrects arbitrary single-qubit errors (bit flips, phase flips, or both).
|
||||
Concatenates bit-flip and phase-flip codes.
|
||||
$
|
||||
ket(0)->1/(2sqrt(2))(ket(000)+ket(111))(ket(000)+ket(111))(ket(000)+ket(111)) \
|
||||
ket(1)->1/(2sqrt(2))(ket(000)-ket(111))(ket(000)-ket(111))(ket(000)-ket(111)) \
|
||||
$
|
||||
|
||||
- Stabilizer Codes: A general framework for QEC. Code space is the simultaneous
|
||||
$+1$ eigenspace of a set of commuting Pauli operators (stabilizers).
|
||||
|
||||
Loading…
Reference in New Issue
Block a user