diff --git a/main.typ b/main.typ index eb2939e..21263d9 100644 --- a/main.typ +++ b/main.typ @@ -17,7 +17,7 @@ #let CU = $lr(C-U)$ #let QFT = $lr(Q F T)$ -= Bre-Ket Notation += Bra-Ket Notation == Ket $ket(psi)$ Represents a column vector for a quantum state. $ ket(psi)=alpha ket(0)+beta ket(1) <==> vec(alpha, beta) $ @@ -107,7 +107,10 @@ $ = Single Qubit Unitary Transformations Quantum gates are unitary matrices $U$. -$ U U^dagger=U^dagger U=I $ +- Unitary condition: $U U^dagger=U^dagger U=I$, where $U^dagger$ is the + conjugate transpose. +- Action on state $ket(psi')=U ket(psi)$ + === Properties Linearity @@ -132,6 +135,7 @@ $ === X (NOT) Bit flip +#figure(quantum-circuit(..tq.build(tq.x(0)))) $ X=mat(0, 1; 1, 0) distance cases( @@ -141,6 +145,7 @@ $ $ === Y Gate +#figure(quantum-circuit(..tq.build(tq.y(0)))) $ Y=mat(0, -i; i, 0) distance cases( @@ -151,6 +156,7 @@ $ === Z Gate Phase flip +#figure(quantum-circuit(..tq.build(tq.z(0)))) $ Z=mat(1, 0; 0, -1) distance cases( @@ -161,6 +167,7 @@ $ == Hadamard Gate ($H$) Creates superpositions +#figure(quantum-circuit(..tq.build(tq.h(0)))) $ H=1/sqrt(2) mat(1, 1; 1, -1) distance cases( @@ -174,14 +181,18 @@ $ H H=H^2=I $ + == Phase Gates === $S$ Gate $(sqrt(Z))$ +#figure(quantum-circuit(..tq.build(tq.s(0)))) $ S= mat(1, 0; 0, i) distance S^2=Z $ === $T$ Gate $(pi/8))$ +#figure(quantum-circuit(..tq.build(tq.t(0)))) $ T= mat(1, 0; 0, e^(i pi/4)) distance T^2=S $ == Rotation Gates ($R_n (theta)$) +#figure(quantum-circuit(..tq.build(tq.rx($theta$, 0)))) $ R_x (theta)= e^((-i theta X)/2)= @@ -191,6 +202,7 @@ $ ) $ +#figure(quantum-circuit(..tq.build(tq.ry($theta$, 0)))) $ R_y (theta)= e^((-i theta Y)/2)= @@ -200,6 +212,7 @@ $ ) $ +#figure(quantum-circuit(..tq.build(tq.rz($theta$, 0)))) $ R_z (theta)= e^((-i theta Z)/2)= @@ -264,11 +277,24 @@ $ $ === Entangled States Cannot be factored + ==== Example $ 1/sqrt(2)(ket(00)+ket(11)) ("Bell state" ket(Phi^+)) $ +#figure(quantum-circuit( + lstick($ket(0)$), + gate($H$), + ctrl(1), + 1, + [\ ], + lstick($ket(0)$), + 1, + targ(), + 1, +)) + == Multi-Qubit Measurement & Normalization Measure one qubit from a multi-qubit system. ==== Example @@ -333,7 +359,11 @@ $ CNOT ket(c) ket(t)=ket(c)ket(t tensor c) $ === $SWAP$ Gate Swaps two qubits. -#figure(quantum-circuit(..tq.build(tq.swap(0, 1)))) +#figure([ + #quantum-circuit(..tq.build(tq.swap(0, 1))) + or + #quantum-circuit(..tq.build(tq.cx(0, 1), tq.cx(1, 0), tq.cx(0, 1))) +]) === Toffoli Gate ($CCNOT$) $ CCNOT ket(c_1 c_2 t)=ket(c_1 c_2 t tensor (c_1 dot c_2)) $ @@ -483,6 +513,10 @@ $ (where $N=p q$, period $p$), then $ QFT_N ket(psi)=1/sqrt(p) sum_(k=0)^(p-1) c_k ket(k dot N/p) $ (Output is superposition of multiples of $N/p$). + + +#figure(quantum-circuit(..tq.qft(3))) + == Period Finding (Kvantu algoritms perioda atraĊĦanai) - Problem: Given $f(x) = f(x+r)$, find period $r$. $N$ is size of domain. - Algorithm: