Compare commits

...

27 Commits
v0.2.0 ... main

Author SHA1 Message Date
81991027bb
fix: clippy warnings
Some checks failed
CI / build-and-test (push) Has been cancelled
2025-09-25 11:40:42 +03:00
b874f05471 docs: fix method name 2025-01-20 21:11:55 +02:00
5585966da6 docs(pathfinding): add docstrings 2025-01-14 13:06:47 +02:00
cafcb3545f
Merge pull request #4 from kristoferssolo/feature/pathfinding 2025-01-14 12:43:27 +02:00
e0f180aeee test(pathfinding): add tests 2025-01-14 12:42:21 +02:00
4eab4d1198 feat(pathfinding): use pathfinding crate 2025-01-14 11:58:59 +02:00
6cd7550086 feat(pathfinding): add A* 2025-01-14 11:35:20 +02:00
fae8e91b54 BREAKING CHANGE: deprecate Maze::len() in favor of Maze::count() 2025-01-02 22:32:47 +02:00
d66e4c4bb2 fix(walls): pass tests 2024-12-28 18:04:17 +02:00
2b3a375c4f fix(walls): contains de-reference 2024-12-28 17:11:26 +02:00
dcbe06fb8c Merge branch 'feature/add-traits' 2024-12-26 18:15:59 +02:00
91b1326bd4 feat(traits): add traits 2024-12-26 18:15:46 +02:00
434a23b15e
Merge pull request #3 from kristoferssolo/tests/increase-coverage
Tests/increase coverage
2024-12-26 01:03:48 +02:00
a562333b90 fix(bevy): imports 2024-12-26 00:54:47 +02:00
9740ce1a5a test(walls): 93% coverage 2024-12-25 22:57:13 +02:00
43a669dee8 test(maze): 88% coverage 2024-12-25 21:24:55 +02:00
012d1e5cca refactor: rename files 2024-12-25 20:56:22 +02:00
6660b4613d test(generator): 89% coverage 2024-12-25 20:51:45 +02:00
7cacf92014 test(builder): 100% builder tests 2024-12-25 20:18:12 +02:00
389c8ee1fd docs: add README.md 2024-12-25 19:23:42 +02:00
cd4f369108 docs: update 2024-12-25 19:01:43 +02:00
83f2e47e27 fix: typo 2024-12-25 18:01:20 +02:00
7e5abb9a79 chore: bump version 2024-12-25 17:07:27 +02:00
dd6111dce3 docs: fix typos 2024-12-25 17:06:22 +02:00
44dbbbbacf refactor(rand): remove rand_chacha dependency 2024-12-12 20:59:01 +02:00
292b7b5df4 feat(bevy): add component feature 2024-12-12 20:52:04 +02:00
0d16152080 chore: update to bevy 0.15 2024-12-11 15:33:22 +02:00
21 changed files with 2733 additions and 1447 deletions

View File

@ -9,76 +9,30 @@ env:
RUSTFLAGS: --deny warnings
RUSTDOCFLAGS: --deny warnings
jobs:
# Run tests.
test:
name: Tests
build-and-test:
runs-on: ubuntu-latest
timeout-minutes: 30
env:
SCCACHE_GHA_ENABLED: "true"
RUSTC_WRAPPER: "sccache"
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install Rust toolchain
- name: Checkout code
uses: actions/checkout@v5
- name: Install Rust
uses: dtolnay/rust-toolchain@stable
- name: Install dependencies
run: sudo apt-get update; sudo apt-get install --no-install-recommends libasound2-dev libudev-dev libwayland-dev libxkbcommon-dev
- name: Populate target directory from cache
uses: Leafwing-Studios/cargo-cache@v2
with:
sweep-cache: true
- name: Run tests
toolchain: stable
components: clippy, rustfmt
- name: Run sccache-cache
uses: mozilla-actions/sccache-action@v0.0.9
- name: Install cargo-nextest
uses: taiki-e/install-action@cargo-nextest
- name: Run Clippy
run: cargo clippy --locked --workspace --all-targets --all-features -- -D warnings
- name: Run formatting
run: cargo fmt --all --check
- name: Run Tests
run: |
cargo test --locked --workspace --all-features --all-targets
# Workaround for https://github.com/rust-lang/cargo/issues/6669
cargo nextest run --all-features --all-targets
cargo test --locked --workspace --all-features --doc
# Run clippy lints.
clippy:
name: Clippy
runs-on: ubuntu-latest
timeout-minutes: 30
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install Rust toolchain
uses: dtolnay/rust-toolchain@stable
with:
components: clippy
- name: Install dependencies
run: sudo apt-get update; sudo apt-get install --no-install-recommends libasound2-dev libudev-dev libwayland-dev libxkbcommon-dev
- name: Populate target directory from cache
uses: Leafwing-Studios/cargo-cache@v2
with:
sweep-cache: true
- name: Run clippy lints
run: cargo clippy --locked --workspace --all-targets --all-features -- --deny warnings
# Check formatting.
format:
name: Format
runs-on: ubuntu-latest
timeout-minutes: 30
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install Rust toolchain
uses: dtolnay/rust-toolchain@stable
with:
components: rustfmt
- name: Run cargo fmt
run: cargo fmt --all -- --check
# Check documentation.
doc:
name: Docs
runs-on: ubuntu-latest
timeout-minutes: 30
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install Rust toolchain
uses: dtolnay/rust-toolchain@stable
- name: Install dependencies
run: sudo apt-get update; sudo apt-get install --no-install-recommends libasound2-dev libudev-dev libwayland-dev libxkbcommon-dev
- name: Populate target directory from cache
uses: Leafwing-Studios/cargo-cache@v2
with:
sweep-cache: true
- name: Check documentation
- name: Check Documentation
run: cargo doc --locked --workspace --all-features --document-private-items --no-deps

1483
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -1,7 +1,7 @@
[package]
name = "hexlab"
authors = ["Kristofers Solo <dev@kristofers.xyz>"]
version = "0.1.5"
version = "0.6.1"
edition = "2021"
description = "A hexagonal maze generation and manipulation library"
repository = "https://github.com/kristoferssolo/hexlab"
@ -16,23 +16,41 @@ categories = [
"data-structures",
]
exclude = ["/.github", "/.gitignore", "/tests", "*.png", "*.md"]
readme = "README.md"
[dependencies]
bevy = { version = "0.14", optional = true }
hexx = { version = "0.18" }
hexx = { version = "0.19" }
rand = "0.8"
rand_chacha = "0.3"
serde = { version = "1.0", features = ["derive"], optional = true }
thiserror = "2.0"
bevy = { version = "0.15", optional = true }
bevy_utils = { version = "0.15", optional = true }
glam = { version = "0.29", optional = true }
pathfinding = { version = "4.13", optional = true }
[dependencies.bevy_reflect]
version = "0.15"
optional = true
default-features = false
features = ["glam"]
[dev-dependencies]
claims = "0.8"
rstest = "0.24"
[features]
default = []
serde = ["dep:serde", "hexx/serde", "rand_chacha/serde"]
bevy = ["dep:bevy", "hexx/bevy_reflect"]
full = ["serde", "bevy"]
serde = ["dep:serde", "hexx/serde"]
bevy = ["dep:bevy", "bevy_reflect"]
bevy_reflect = [
"dep:bevy_reflect",
"dep:bevy_utils",
"hexx/bevy_reflect",
"dep:glam",
]
pathfinding = ["dep:pathfinding"]
full = ["serde", "bevy", "pathfinding"]
[profile.dev]
opt-level = 1 # Better compile times with some optimization
@ -47,8 +65,23 @@ panic = "abort" # Smaller binary size
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[profile.dev.package."*"]
opt-level = 3
# Override some settings for native builds.
[profile.release-native]
# Default to release profile values.
inherits = "release"
# Optimize with performance in mind.
opt-level = 3
# Keep debug information in the binary.
strip = "none"
[lints.clippy]
pedantic = "warn"
nursery = "warn"
unwrap_used = "warn"
expect_used = "warn"
[package.metadata.nextest]
slow-timeout = { period = "120s", terminate-after = 3 }

89
README.md Normal file
View File

@ -0,0 +1,89 @@
# Hexlab
<!-- toc -->
- [Features](#features)
- [Installation](#installation)
- [Getting Started](#getting-started)
- [Usage](#usage)
- [Documentation](#documentation)
- [Contributing](#contributing)
- [Acknowledgements](#acknowledgements)
- [License](#license)
<!-- tocstop -->
Hexlab is a Rust library for generating and manipulating hexagonal mazes.
## Features
- Create hexagonal mazes of configurable size
- Customizable maze properties (radius, start position, seed)
- Efficient bit-flag representation of walls for optimized memory usage
- Multiple maze generation algorithms (WIP)
- Maze builder pattern for easy and flexible maze creation
## Installation
Add `hexlab` as a dependency:
```sh
cargo add hexlab
```
## Getting Started
```rust
use hexlab::prelude::*;
fn main() {
// Create a new maze with radius 5
let maze = MazeBuilder::new()
.with_radius(5)
.build()
.expect("Failed to create maze");
println!("Maze size: {}", maze.count());
}
```
## Usage
```rust
use hexlab::prelude::*;
// Create a new maze
let maze = MazeBuilder::new()
.with_radius(5)
.build()
.expect("Failed to create maze");
// Get a specific tile
let tile = maze.get_tile(&Hex::new(1, -1)).unwrap();
// Check if a wall exists
let has_wall = tile.walls().contains(EdgeDirection::FLAT_NORTH);
```
## Documentation
Full documentation is available at [docs.rs](https://docs.rs/hexlab).
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
## Acknowledgements
Hexlab relies on the excellent [hexx](https://github.com/ManevilleF/hexx)
library for handling hexagonal grid mathematics, coordinates, and related
operations. We're grateful for the robust foundation it provides for working
with hexagonal grids.
## License
This project is dual-licensed under either:
- MIT License ([LICENSE-MIT](LICENSE-MIT) or [http://opensource.org/licenses/MIT](http://opensource.org/licenses/MIT))
- Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or [http://www.apache.org/licenses/LICENSE-2.0](http://www.apache.org/licenses/LICENSE-2.0))
at your option.

View File

@ -1,38 +1,16 @@
use crate::{
generator::{generate_backtracking, GeneratorType},
HexMaze,
};
use crate::{errors::MazeBuilderError, GeneratorType, Maze};
use hexx::Hex;
use thiserror::Error;
#[derive(Debug, Error)]
pub enum MazeBuilderError {
/// Occurs when attempting to build a maze without specifying a radius.
#[error("Radius must be specified to build a maze")]
NoRadius,
/// Occurs when the specified radius is too large.
#[error("Radius {0} is too large. Maximum allowed radius is {1}")]
RadiusTooLarge(u32, u32),
/// Occurs when the specified start position is outside the maze bounds.
#[error("Start position {0:?} is outside maze bounds")]
InvalidStartPosition(Hex),
/// Occurs when maze generation fails.
#[error("Failed to generate maze: {0}")]
GenerationError(String),
}
/// A builder pattern for creating hexagonal mazes.
///
/// This struct provides a fluent interface for configuring and building hexagonal mazes.
/// It offers flexibility in specifying the maze size, random seed, and generation algorithm.
/// It offers flexibility in specifying the maze size, random seed, generation algorithm,
/// and starting position.
///
/// # Examples
///
/// Basic usage:
/// ```rust
/// ```
/// use hexlab::prelude::*;
///
/// let maze = MazeBuilder::new()
@ -42,11 +20,11 @@ pub enum MazeBuilderError {
///
/// // A radius of 5 creates 61 hexagonal tiles
/// assert!(!maze.is_empty());
/// assert_eq!(maze.len(), 91);
/// assert_eq!(maze.count(), 91);
/// ```
///
/// Using a seed for reproducible results:
/// ```rust
/// ```
/// use hexlab::prelude::*;
///
/// let maze1 = MazeBuilder::new()
@ -62,12 +40,12 @@ pub enum MazeBuilderError {
/// .expect("Failed to create maze");
///
/// // Same seed should produce identical mazes
/// assert_eq!(maze1.len(), maze2.len());
/// assert_eq!(maze1.count(), maze2.count());
/// assert_eq!(maze1, maze2);
/// ```
///
/// Specifying a custom generator:
/// ```rust
/// ```
/// use hexlab::prelude::*;
///
/// let maze = MazeBuilder::new()
@ -79,14 +57,14 @@ pub enum MazeBuilderError {
#[allow(clippy::module_name_repetitions)]
#[derive(Default)]
pub struct MazeBuilder {
radius: Option<u32>,
radius: Option<u16>,
seed: Option<u64>,
generator_type: GeneratorType,
start_position: Option<Hex>,
}
impl MazeBuilder {
/// Creates a new [`MazeBuilder`] instance.
/// Creates a new [`MazeBuilder`] instance with default settings.
#[inline]
#[must_use]
pub fn new() -> Self {
@ -95,21 +73,28 @@ impl MazeBuilder {
/// Sets the radius for the hexagonal maze.
///
/// The radius determines the size of the maze, specifically the number of tiles
/// from the center (0,0) to the edge of the hexagon, not including the center tile.
/// For example, a radius of 3 would create a maze with 3 tiles from center to edge,
/// resulting in a total diameter of 7 tiles (3 + 1 + 3).
///
/// # Arguments
///
/// * `radius` - The size of the maze (number of tiles along one edge).
/// - `radius` - The number of tiles from the center to the edge of the hexagon.
#[inline]
#[must_use]
pub const fn with_radius(mut self, radius: u32) -> Self {
pub const fn with_radius(mut self, radius: u16) -> Self {
self.radius = Some(radius);
self
}
/// Sets the random seed for maze generation.
///
/// Using the same seed will produce identical mazes, allowing for reproducible results.
///
/// # Arguments
///
/// * `seed` - The random seed value.
/// - `seed` - The random seed value.
#[inline]
#[must_use]
pub const fn with_seed(mut self, seed: u64) -> Self {
@ -123,14 +108,18 @@ impl MazeBuilder {
///
/// # Arguments
///
/// * `generator_type` - The maze generation algorithm to use.
/// - `generator_type` - The maze generation algorithm to use.
#[inline]
#[must_use]
pub const fn with_generator(mut self, generator_type: GeneratorType) -> Self {
self.generator_type = generator_type;
self
}
/// Sets the starting position for maze generation.
///
/// # Arguments
///
/// - `pos` - The hexagonal coordinates for the starting position.
#[inline]
#[must_use]
pub const fn with_start_position(mut self, pos: Hex) -> Self {
@ -147,7 +136,7 @@ impl MazeBuilder {
///
/// # Examples
///
/// ```rust
/// ```
/// use hexlab::prelude::*;
///
/// // Should fail without radius
@ -163,41 +152,35 @@ impl MazeBuilder {
/// let maze = result.unwrap();
/// assert!(!maze.is_empty());
/// ```
pub fn build(self) -> Result<HexMaze, MazeBuilderError> {
pub fn build(self) -> Result<Maze, MazeBuilderError> {
let radius = self.radius.ok_or(MazeBuilderError::NoRadius)?;
let mut maze = create_hex_maze(radius);
if let Some(start_pos) = self.start_position {
if maze.get_tile(&start_pos).is_none() {
if maze.get(&start_pos).is_none() {
return Err(MazeBuilderError::InvalidStartPosition(start_pos));
}
}
if !maze.is_empty() {
self.generate_maze(&mut maze);
self.generator_type
.generate(&mut maze, self.start_position, self.seed);
}
Ok(maze)
}
fn generate_maze(&self, maze: &mut HexMaze) {
match self.generator_type {
GeneratorType::RecursiveBacktracking => {
generate_backtracking(maze, self.start_position, self.seed);
}
}
}
}
fn create_hex_maze(radius: u32) -> HexMaze {
let mut maze = HexMaze::new();
let radius = i32::try_from(radius).unwrap_or(5);
pub fn create_hex_maze(radius: u16) -> Maze {
let mut maze = Maze::new();
let radius = i32::from(radius);
for q in -radius..=radius {
let r1 = (-radius).max(-q - radius);
let r2 = radius.min(-q + radius);
for r in r1..=r2 {
let pos = Hex::new(q, r);
maze.add_tile(pos);
maze.insert(pos);
}
}
@ -206,194 +189,68 @@ fn create_hex_maze(radius: u32) -> HexMaze {
#[cfg(test)]
mod test {
use hexx::EdgeDirection;
use super::*;
/// Helper function to count the number of tiles for a given radius
fn calculate_hex_tiles(radius: u32) -> usize {
let r = radius as i32;
(3 * r * r + 3 * r + 1) as usize
}
use claims::{assert_gt, assert_some};
use rstest::rstest;
#[test]
fn new_builder() {
fn maze_builder_new() {
let builder = MazeBuilder::new();
assert!(builder.radius.is_none());
assert!(builder.seed.is_none());
assert!(builder.start_position.is_none());
assert_eq!(builder.radius, None);
assert_eq!(builder.seed, None);
assert_eq!(builder.generator_type, GeneratorType::default());
assert_eq!(builder.start_position, None);
}
#[rstest]
#[case(0, 1)] // Minimum size is 1 tile
#[case(1, 7)]
#[case(2, 19)]
#[case(3, 37)]
#[case(10, 331)]
#[case(100, 30301)]
fn create_hex_maze_various_radii(#[case] radius: u16, #[case] expected_size: usize) {
let maze = create_hex_maze(radius);
assert_eq!(maze.count(), expected_size);
}
#[test]
fn builder_with_radius() {
let radius = 5;
let maze = MazeBuilder::new().with_radius(radius).build().unwrap();
fn create_hex_maze_large_radius() {
let large_radius = 1000;
let maze = create_hex_maze(large_radius);
assert_gt!(maze.count(), 0);
assert_eq!(maze.len(), calculate_hex_tiles(radius));
assert!(maze.get_tile(&Hex::ZERO).is_some());
// Calculate expected size for this radius
let expected_size = 3 * (large_radius as usize).pow(2) + 3 * large_radius as usize + 1;
assert_eq!(maze.count(), expected_size);
}
#[test]
fn builder_without_radius() {
let maze = MazeBuilder::new().build();
assert!(matches!(maze, Err(MazeBuilderError::NoRadius)));
}
#[test]
fn builder_with_seed() {
let radius = 3;
let seed = 12345;
let maze1 = MazeBuilder::new()
.with_radius(radius)
.with_seed(seed)
.build()
.unwrap();
let maze2 = MazeBuilder::new()
.with_radius(radius)
.with_seed(seed)
.build()
.unwrap();
// Same seed should produce identical mazes
assert_eq!(maze1, maze2);
}
#[test]
fn different_seeds_produce_different_mazes() {
let radius = 3;
let maze1 = MazeBuilder::new()
.with_radius(radius)
.with_seed(12345)
.build()
.unwrap();
let maze2 = MazeBuilder::new()
.with_radius(radius)
.with_seed(54321)
.build()
.unwrap();
// Different seeds should produce different mazes
assert_ne!(maze1, maze2);
}
#[test]
fn maze_connectivity() {
let radius = 3;
let maze = MazeBuilder::new().with_radius(radius).build().unwrap();
// Helper function to count accessible neighbors
fn count_accessible_neighbors(maze: &HexMaze, pos: Hex) -> usize {
EdgeDirection::ALL_DIRECTIONS
.iter()
.filter(|&&dir| {
let neighbor = pos + dir;
if let Some(walls) = maze.get_walls(&pos) {
!walls.contains(dir) && maze.get_tile(&neighbor).is_some()
} else {
false
}
})
.count()
}
// Check that each tile has at least one connection
for &pos in maze.keys() {
let accessible_neighbors = count_accessible_neighbors(&maze, pos);
assert!(
accessible_neighbors > 0,
"Tile at {:?} has no accessible neighbors",
pos
);
}
}
#[test]
fn start_position() {
let radius = 3;
let start_pos = Hex::new(1, 1);
let maze = MazeBuilder::new()
.with_radius(radius)
.with_start_position(start_pos)
.build()
.unwrap();
assert!(maze.get_tile(&start_pos).is_some());
}
#[test]
fn invalid_start_position() {
let maze = MazeBuilder::new()
.with_radius(3)
.with_start_position(Hex::new(10, 10))
.build();
assert!(matches!(
maze,
Err(MazeBuilderError::InvalidStartPosition(_))
));
}
#[test]
fn maze_boundaries() {
let radius = 3;
let maze = MazeBuilder::new().with_radius(radius).build().unwrap();
// Test that tiles exist within the radius
for q in -(radius as i32)..=(radius as i32) {
for r in -(radius as i32)..=(radius as i32) {
let pos = Hex::new(q, r);
if q.abs() + r.abs() <= radius as i32 {
assert!(
maze.get_tile(&pos).is_some(),
"Expected tile at {:?} to exist",
pos
);
}
}
}
}
#[test]
fn different_radii() {
for radius in 1..=5 {
let maze = MazeBuilder::new().with_radius(radius).build().unwrap();
assert_eq!(
maze.len(),
calculate_hex_tiles(radius),
"Incorrect number of tiles for radius {}",
radius
);
}
}
#[test]
fn wall_consistency() {
let radius = 3;
let maze = MazeBuilder::new().with_radius(radius).build().unwrap();
// Check that if tile A has no wall to tile B,
// then tile B has no wall to tile A
for &pos in maze.keys() {
for &dir in &EdgeDirection::ALL_DIRECTIONS {
let neighbor = pos + dir;
if let (Some(walls), Some(neighbor_walls)) =
(maze.get_walls(&pos), maze.get_walls(&neighbor))
{
assert_eq!(
walls.contains(dir),
neighbor_walls.contains(dir.const_neg()),
"Wall inconsistency between {:?} and {:?}",
pos,
neighbor
);
}
}
fn create_hex_maze_tile_positions() {
let maze = create_hex_maze(2);
let expected_positions = [
Hex::new(0, 0),
Hex::new(1, -1),
Hex::new(1, 0),
Hex::new(0, 1),
Hex::new(-1, 1),
Hex::new(-1, 0),
Hex::new(0, -1),
Hex::new(2, -2),
Hex::new(2, -1),
Hex::new(2, 0),
Hex::new(1, 1),
Hex::new(0, 2),
Hex::new(-1, 2),
Hex::new(-2, 2),
Hex::new(-2, 1),
Hex::new(-2, 0),
Hex::new(-1, -1),
Hex::new(0, -2),
Hex::new(1, -2),
];
for pos in &expected_positions {
assert_some!(maze.get(pos), "Expected tile at {pos:?}");
}
}
}

41
src/errors.rs Normal file
View File

@ -0,0 +1,41 @@
use hexx::{EdgeDirection, Hex};
use thiserror::Error;
use crate::Tile;
#[derive(Debug, Error, PartialEq, Eq)]
pub enum MazeBuilderError {
/// Occurs when attempting to build a maze without specifying a radius.
#[error("Radius must be specified to build a maze")]
NoRadius,
/// Occurs when the specified start position is outside the maze bounds.
#[error("Start position {0:?} is outside maze bounds")]
InvalidStartPosition(Hex),
/// Occurs when maze generation fails.
#[error("Failed to generate maze: {0}")]
GenerationError(String),
}
#[derive(Debug, Error, PartialEq, Eq)]
pub enum MazeError {
/// Error when attempting to access or modify a tile at a non-existent coordinate.
#[error("Invalid coordinate: {0:?}")]
InvalidCoordinate(Hex),
/// Error when a tile's internal position doesn't match its insertion coordinate.
#[error("Tile position ({tile_pos:?}) does not match insertion coordinates ({insert_pos:?})")]
PositionMismatch { tile_pos: Hex, insert_pos: Hex },
/// Error when attempting to insert a tile at an already occupied position.
#[error("A tile {old_tile:?} already exists at position {pos:?}")]
TileAlreadyExists { pos: Hex, old_tile: Tile },
/// Error when a wall operation fails at the specified coordinate and direction.
#[error("Cannot add wall at {coord:?} in direction {direction:?}")]
WallOperationFailed {
coord: Hex,
direction: EdgeDirection,
},
}

View File

@ -1,50 +0,0 @@
use std::collections::HashSet;
use hexx::{EdgeDirection, Hex};
use rand::{seq::SliceRandom, thread_rng, Rng, RngCore, SeedableRng};
use rand_chacha::ChaCha8Rng;
use crate::HexMaze;
#[allow(clippy::module_name_repetitions)]
#[derive(Debug, Clone, Copy, Default)]
pub enum GeneratorType {
#[default]
RecursiveBacktracking,
}
pub fn generate_backtracking(maze: &mut HexMaze, start_pos: Option<Hex>, seed: Option<u64>) {
if maze.is_empty() {
return;
}
let start = start_pos.unwrap_or(Hex::ZERO);
let mut visited = HashSet::new();
let mut rng: Box<dyn RngCore> = seed.map_or_else(
|| Box::new(thread_rng()) as Box<dyn RngCore>,
|seed| Box::new(ChaCha8Rng::seed_from_u64(seed)) as Box<dyn RngCore>,
);
recursive_backtrack(maze, start, &mut visited, &mut rng);
}
fn recursive_backtrack<R: Rng>(
maze: &mut HexMaze,
current: Hex,
visited: &mut HashSet<Hex>,
rng: &mut R,
) {
visited.insert(current);
let mut directions = EdgeDirection::ALL_DIRECTIONS;
directions.shuffle(rng);
for direction in directions {
let neighbor = current + direction;
if maze.get_tile(&neighbor).is_some() && !visited.contains(&neighbor) {
maze.remove_tile_wall(&current, direction);
maze.remove_tile_wall(&neighbor, direction.const_neg());
recursive_backtrack(maze, neighbor, visited, rng);
}
}
}

116
src/generator/backtrack.rs Normal file
View File

@ -0,0 +1,116 @@
use crate::Maze;
use hexx::{EdgeDirection, Hex};
use rand::{rngs::StdRng, seq::SliceRandom, thread_rng, Rng, RngCore, SeedableRng};
use std::collections::HashSet;
pub(super) fn generate_backtracking(maze: &mut Maze, start_pos: Option<Hex>, seed: Option<u64>) {
if maze.is_empty() {
return;
}
let start = start_pos.unwrap_or(Hex::ZERO);
let mut visited = HashSet::new();
let mut rng: Box<dyn RngCore> = seed.map_or_else(
|| Box::new(thread_rng()) as Box<dyn RngCore>,
|seed| Box::new(StdRng::seed_from_u64(seed)) as Box<dyn RngCore>,
);
recursive_backtrack(maze, start, &mut visited, &mut rng);
}
fn recursive_backtrack<R: Rng>(
maze: &mut Maze,
current: Hex,
visited: &mut HashSet<Hex>,
rng: &mut R,
) {
visited.insert(current);
let mut directions = EdgeDirection::ALL_DIRECTIONS;
directions.shuffle(rng);
for direction in directions {
let neighbor = current + direction;
if maze.get(&neighbor).is_some() && !visited.contains(&neighbor) {
let _ = maze.remove_tile_wall(&current, direction);
let _ = maze.remove_tile_wall(&neighbor, direction.const_neg());
recursive_backtrack(maze, neighbor, visited, rng);
}
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::builder::create_hex_maze;
use claims::assert_some;
use rstest::rstest;
#[rstest]
#[case(Hex::ZERO)]
#[case(Hex::new(1, -1))]
#[case(Hex::new(-2, 2))]
fn recursive_backtrack_start_visited(#[case] start: Hex) {
let mut maze = create_hex_maze(3);
let mut rng = StdRng::seed_from_u64(12345);
let mut visited = HashSet::new();
recursive_backtrack(&mut maze, start, &mut visited, &mut rng);
assert!(visited.contains(&start), "Start position should be visited");
}
#[rstest]
#[case(Hex::ZERO)]
#[case(Hex::new(1, -1))]
#[case(Hex::new(-2, 2))]
fn recursive_backtrack_walls_removed(#[case] start: Hex) {
let mut maze = create_hex_maze(3);
let mut rng = StdRng::seed_from_u64(12345);
let mut visited = HashSet::new();
recursive_backtrack(&mut maze, start, &mut visited, &mut rng);
for &pos in maze.keys() {
let walls = assert_some!(maze.get_walls(&pos));
assert!(
walls.count() < 6,
"At least one wall should be removed for each tile"
);
}
}
#[rstest]
#[case(Hex::ZERO)]
#[case(Hex::new(1, -1))]
#[case(Hex::new(-2, 2))]
fn recursive_backtrack_connectivity(#[case] start: Hex) {
let mut maze = create_hex_maze(3);
let mut rng = StdRng::seed_from_u64(12345);
let mut visited = HashSet::new();
recursive_backtrack(&mut maze, start, &mut visited, &mut rng);
let mut to_visit = vec![start];
let mut connected = HashSet::new();
while let Some(current) = to_visit.pop() {
if !connected.insert(current) {
continue;
}
for dir in EdgeDirection::ALL_DIRECTIONS {
let neighbor = current + dir;
if let Some(walls) = maze.get_walls(&current) {
if !walls.contains(dir) && maze.get(&neighbor).is_some() {
to_visit.push(neighbor);
}
}
}
}
assert_eq!(
connected.len(),
maze.count(),
"All tiles should be connected"
);
}
}

25
src/generator/mod.rs Normal file
View File

@ -0,0 +1,25 @@
mod backtrack;
use crate::Maze;
use backtrack::generate_backtracking;
#[cfg(feature = "bevy")]
use bevy::prelude::*;
use hexx::Hex;
#[allow(clippy::module_name_repetitions)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
#[cfg_attr(feature = "bevy", derive(Component))]
#[cfg_attr(feature = "bevy", reflect(Component))]
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub enum GeneratorType {
#[default]
RecursiveBacktracking,
}
impl GeneratorType {
pub fn generate(&self, maze: &mut Maze, start_pos: Option<Hex>, seed: Option<u64>) {
match self {
Self::RecursiveBacktracking => generate_backtracking(maze, start_pos, seed),
}
}
}

View File

@ -1,250 +0,0 @@
use std::{
collections::HashMap,
ops::{Deref, DerefMut},
};
use hexx::{EdgeDirection, Hex};
use super::{HexTile, Walls};
/// Represents a hexagonal maze with tiles and walls
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[derive(Debug, Clone, Default, PartialEq, Eq)]
pub struct HexMaze(HashMap<Hex, HexTile>);
impl HexMaze {
/// Creates a new empty maze
#[inline]
#[must_use]
pub fn new() -> Self {
Self::default()
}
/// Adds a new tile at the specified coordinates
pub fn add_tile(&mut self, coords: Hex) {
let tile = HexTile::new(coords);
self.0.insert(coords, tile);
}
/// Adds a wall in the specified direction at the given coordinates
pub fn add_wall(&mut self, coord: Hex, direction: EdgeDirection) {
if let Some(tile) = self.0.get_mut(&coord) {
tile.walls.add(direction);
}
}
/// Returns a reference to the tile at the specified coordinates
#[inline]
#[must_use]
pub fn get_tile(&self, coord: &Hex) -> Option<&HexTile> {
self.0.get(coord)
}
/// Returns a reference to the walls at the specified coordinates
pub fn get_walls(&self, coord: &Hex) -> Option<&Walls> {
self.0.get(coord).map(HexTile::walls)
}
/// Returns the number of tiles in the maze
#[inline]
#[must_use]
pub fn len(&self) -> usize {
self.0.len()
}
/// Returns true if the maze is empty
#[inline]
#[must_use]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
pub fn remove_tile_wall(&mut self, coord: &Hex, direction: EdgeDirection) {
if let Some(tile) = self.0.get_mut(coord) {
tile.walls.remove(direction);
}
}
}
impl Deref for HexMaze {
type Target = HashMap<Hex, HexTile>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for HexMaze {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn new_maze() {
let maze = HexMaze::default();
assert!(maze.is_empty(), "New maze should be empty");
assert_eq!(maze.len(), 0, "New maze should have zero tiles");
}
#[test]
fn add_tile() {
let mut maze = HexMaze::default();
let coords = [Hex::ZERO, Hex::new(1, -1), Hex::new(-1, 1)];
// Add tiles
for &coord in &coords {
maze.add_tile(coord);
assert!(
maze.get_tile(&coord).is_some(),
"Tile should exist after adding"
);
}
assert_eq!(
maze.len(),
coords.len(),
"Maze should contain all added tiles"
);
}
#[test]
fn wall_operations() {
let mut maze = HexMaze::default();
let coord = Hex::ZERO;
maze.add_tile(coord);
// Test adding walls
let directions = [
EdgeDirection::FLAT_TOP,
EdgeDirection::FLAT_BOTTOM,
EdgeDirection::POINTY_TOP_RIGHT,
];
for &direction in &directions {
maze.add_wall(coord, direction);
assert!(
maze.get_walls(&coord).unwrap().contains(direction),
"Wall should exist after adding"
);
}
}
#[test]
fn tile_iteration() {
let mut maze = HexMaze::default();
let coords = [Hex::ZERO, Hex::new(1, 0), Hex::new(0, 1)];
// Add tiles
for &coord in &coords {
maze.add_tile(coord);
}
// Test iterator
let collected = maze.iter().map(|(_, tile)| tile).collect::<Vec<_>>();
assert_eq!(
collected.len(),
coords.len(),
"Iterator should yield all tiles"
);
}
#[test]
fn maze_clone() {
let mut maze = HexMaze::default();
let coord = Hex::ZERO;
maze.add_tile(coord);
maze.add_wall(coord, EdgeDirection::FLAT_TOP);
// Test cloning
let cloned_maze = maze.clone();
assert_eq!(
maze.len(),
cloned_maze.len(),
"Cloned maze should have same size"
);
assert!(
cloned_maze
.get_walls(&coord)
.unwrap()
.contains(EdgeDirection::FLAT_TOP),
"Cloned maze should preserve wall state"
);
}
#[test]
fn empty_tile_operations() {
let mut maze = HexMaze::default();
let coord = Hex::ZERO;
// Operations on non-existent tile
assert!(
maze.get_tile(&coord).is_none(),
"Should return None for non-existent tile"
);
assert!(
maze.get_walls(&coord).is_none(),
"Should return None for non-existent walls"
);
// Adding wall to non-existent tile should not panic
maze.add_wall(coord, EdgeDirection::FLAT_TOP);
}
#[test]
fn maze_boundaries() {
let mut maze = HexMaze::default();
let extreme_coords = [
Hex::new(i32::MAX, i32::MIN),
Hex::new(i32::MIN, i32::MAX),
Hex::new(0, i32::MAX),
Hex::new(0, i32::MIN),
Hex::new(i32::MAX, 0),
Hex::new(i32::MIN, 0),
];
// Test with extreme coordinates
for &coord in &extreme_coords {
maze.add_tile(coord);
assert!(
maze.get_tile(&coord).is_some(),
"Should handle extreme coordinates"
);
}
}
#[test]
fn iterator_consistency() {
let mut maze = HexMaze::default();
let coords = [Hex::ZERO, Hex::new(1, -1), Hex::new(-1, 1)];
// Add tiles
for &coord in &coords {
maze.add_tile(coord);
}
// Verify iterator
let iter_coords = maze.iter().map(|(coord, _)| *coord).collect::<Vec<_>>();
assert_eq!(
iter_coords.len(),
coords.len(),
"Iterator should yield all coordinates"
);
for coord in coords {
assert!(
iter_coords.contains(&coord),
"Iterator should contain all added coordinates"
);
}
}
#[test]
fn empty_maze() {
let maze = HexMaze::default();
assert!(maze.is_empty(), "New maze should be empty");
}
}

View File

@ -1,213 +0,0 @@
use std::fmt::Display;
use hexx::Hex;
#[cfg(feature = "bevy")]
use hexx::HexLayout;
use super::Walls;
#[cfg(feature = "bevy")]
use bevy::prelude::*;
/// Represents a single hexagonal tile in the maze
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy", derive(Reflect, Component))]
#[cfg_attr(feature = "bevy", reflect(Component))]
#[derive(Debug, Clone, Default, PartialEq, Eq)]
pub struct HexTile {
pub(crate) pos: Hex,
pub(crate) walls: Walls,
}
impl HexTile {
/// Creates a new tile with pos and default walls
#[must_use]
pub fn new(pos: Hex) -> Self {
Self {
pos,
walls: Walls::default(),
}
}
/// Returns a reference to the tile's walls
#[inline]
#[must_use]
pub const fn walls(&self) -> &Walls {
&self.walls
}
/// Returns position of the tile
#[inline]
#[must_use]
pub const fn pos(&self) -> Hex {
self.pos
}
#[cfg(feature = "bevy")]
#[inline]
#[must_use]
pub fn to_vec2(&self, layout: &HexLayout) -> Vec2 {
layout.hex_to_world_pos(self.pos)
}
#[cfg(feature = "bevy")]
#[inline]
#[must_use]
pub fn to_vec3(&self, layout: &HexLayout) -> Vec3 {
let pos = self.to_vec2(layout);
Vec3::new(pos.x, 0., pos.y)
}
}
impl From<Hex> for HexTile {
fn from(value: Hex) -> Self {
Self {
pos: value,
walls: Walls::default(),
}
}
}
impl Display for HexTile {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "({},{})", self.pos.x, self.pos.y)
}
}
#[cfg(test)]
mod tests {
use hexx::EdgeDirection;
use super::*;
#[test]
fn new_tile() {
let pos = Hex::ZERO;
let tile = HexTile::new(pos);
assert_eq!(tile.pos, pos, "Position should match constructor argument");
assert_eq!(
tile.walls,
Walls::default(),
"Walls should be initialized to default"
);
}
#[test]
fn tile_walls_accessor() {
let pos = Hex::new(1, -1);
let tile = HexTile::new(pos);
// Test walls accessor method
let walls_ref = tile.walls();
assert_eq!(
walls_ref, &tile.walls,
"Walls accessor should return reference to walls"
);
}
#[test]
fn tile_modification() {
let pos = Hex::new(2, 3);
let mut tile = HexTile::new(pos);
// Modify walls
tile.walls.remove(EdgeDirection::FLAT_TOP);
assert!(
!tile.walls.contains(EdgeDirection::FLAT_TOP),
"Wall should be removed"
);
tile.walls.add(EdgeDirection::FLAT_TOP);
assert!(
tile.walls.contains(EdgeDirection::FLAT_TOP),
"Wall should be added back"
);
}
#[test]
fn tile_clone() {
let pos = Hex::new(0, -2);
let tile = HexTile::new(pos);
// Test Clone trait
let cloned_tile = tile.clone();
assert_eq!(tile, cloned_tile, "Cloned tile should equal original");
}
#[test]
fn tile_debug() {
let pos = Hex::ZERO;
let tile = HexTile::new(pos);
// Test Debug trait
let debug_string = format!("{:?}", tile);
assert!(
debug_string.contains("HexTile"),
"Debug output should contain struct name"
);
}
#[test]
fn different_positions() {
let positions = [Hex::ZERO, Hex::new(1, 0), Hex::new(-1, 1), Hex::new(2, -2)];
// Create tiles at different positions
let tiles = positions
.iter()
.map(|&pos| HexTile::new(pos))
.collect::<Vec<_>>();
// Verify each tile has correct position
for (tile, &pos) in tiles.iter().zip(positions.iter()) {
assert_eq!(
tile.pos, pos,
"Tile position should match constructor argument"
);
}
}
#[test]
fn tile_equality() {
let pos1 = Hex::new(1, 1);
let pos2 = Hex::new(1, 1);
let pos3 = Hex::new(2, 1);
let tile1 = HexTile::new(pos1);
let tile2 = HexTile::new(pos2);
let tile3 = HexTile::new(pos3);
assert_eq!(tile1, tile2, "Tiles with same position should be equal");
assert_ne!(
tile1, tile3,
"Tiles with different positions should not be equal"
);
// Test with modified walls
let mut tile4 = HexTile::new(pos1);
tile4.walls.remove(EdgeDirection::FLAT_TOP);
assert_ne!(
tile1, tile4,
"Tiles with different walls should not be equal"
);
}
#[test]
fn hex_boundaries() {
// Test with extreme coordinate values
let extreme_positions = [
Hex::new(i32::MAX, i32::MIN),
Hex::new(i32::MIN, i32::MAX),
Hex::new(0, i32::MAX),
Hex::new(i32::MIN, 0),
];
for pos in extreme_positions {
let tile = HexTile::new(pos);
assert_eq!(
tile.pos, pos,
"Tile should handle extreme coordinate values"
);
}
}
}

View File

@ -1,16 +1,73 @@
//! Hexlab is a library for generating and manipulating hexagonal mazes.
//!
//! # Features
//!
//! - Create hexagonal mazes of configurable size
//! - Customizable maze properties (radius, start position, seed)
//! - Efficient bit-flag representation of walls
//! - Multiple maze generation algorithms
//! - Maze builder pattern for easy maze creation
//!
//! # Examples
//!
//! Here's a quick example to create a simple hexagonal maze:
//!
//!```
//! use hexlab::prelude::*;
//!
//! let maze = MazeBuilder::new()
//! .with_radius(3)
//! .build()
//! .expect("Failed to create maze");
//!
//! assert_eq!(maze.count(), 37); // A radius of 3 should create 37 tiles
//!```
//!
//! Customizing maze generation:
//!
//!```
//! use hexlab::prelude::*;
//!
//! let maze = MazeBuilder::new()
//! .with_radius(2)
//! .with_seed(12345)
//! .with_start_position(Hex::new(1, -1))
//! .build()
//! .expect("Failed to create maze");
//!
//! assert!(maze.get(&Hex::new(1, -1)).is_some());
//!```
//!
//! Manipulating walls:
//!
//!```
//! use hexlab::prelude::*;
//!
//! let mut walls = Walls::empty();
//! assert!(!walls.insert(EdgeDirection::FLAT_NORTH));
//! assert!(walls.contains(EdgeDirection::FLAT_NORTH));
//! assert!(!walls.contains(EdgeDirection::FLAT_SOUTH));
//!```
mod builder;
pub mod errors;
mod generator;
mod hex_maze;
mod hex_tile;
mod maze;
#[cfg(feature = "pathfinding")]
mod pathfinding;
mod tile;
pub mod traits;
mod walls;
pub use builder::{MazeBuilder, MazeBuilderError};
pub use builder::MazeBuilder;
pub use errors::*;
pub use generator::GeneratorType;
pub use hex_maze::HexMaze;
pub use hex_tile::HexTile;
pub use maze::Maze;
pub use tile::Tile;
pub use traits::*;
pub use walls::Walls;
/// Prelude module containing commonly used types
pub mod prelude {
pub use super::{GeneratorType, HexMaze, HexTile, MazeBuilder, MazeBuilderError, Walls};
pub use super::{errors::*, traits::*, GeneratorType, Maze, MazeBuilder, Tile, Walls};
pub use hexx::{EdgeDirection, Hex, HexLayout};
}

380
src/maze.rs Normal file
View File

@ -0,0 +1,380 @@
use super::{Tile, Walls};
use crate::{
errors::MazeError,
traits::{TilePosition, WallStorage},
};
#[cfg(feature = "bevy")]
use bevy::prelude::*;
#[cfg(feature = "bevy_reflect")]
use bevy_utils::HashMap;
use hexx::{EdgeDirection, Hex};
#[cfg(not(feature = "bevy_reflect"))]
use std::collections::HashMap;
use std::ops::{Deref, DerefMut};
/// Represents a hexagonal maze with tiles and walls.
///
/// This struct stores the layout of a hexagonal maze, including the positions
/// of tiles and their associated walls.
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
#[cfg_attr(feature = "bevy", derive(Component))]
#[cfg_attr(feature = "bevy", reflect(Component))]
#[derive(Debug, Clone, Default, PartialEq, Eq)]
pub struct Maze(HashMap<Hex, Tile>);
impl Maze {
/// Creates a new empty maze
///
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// let maze = Maze::new();
///
/// assert!(maze.is_empty());
/// assert_eq!(maze.count(), 0);
/// ```
#[inline]
#[must_use]
pub fn new() -> Self {
Self::default()
}
/// Inserts a new tile at the specified coordinates.
///
/// If the map did not have this key present, [`None`] is returned.
///
/// If the map did have this key present, the value is updated, and the old
/// value is returned.
///
/// # Arguments
///
/// - `coords` - The hexagonal coordinates where the tile should be added.
///
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// let mut maze = Maze::new();
/// let coord = Hex::ZERO;
///
/// assert_eq!(maze.insert(coord), None);
/// assert_eq!(maze.insert(coord), Some(Tile::new(coord)));
/// ```
pub fn insert(&mut self, coords: Hex) -> Option<Tile> {
let tile = Tile::new(coords);
self.0.insert(coords, tile)
}
/// Adds a new tile at the specified coordinates. It is recommended to use [`insert`].
///
/// [`insert`]: Maze::insert
///
/// # Arguments
///
/// - `coords` - The hexagonal coordinates where the tile should be added.
/// - `tile` - The tile to insert to.
///
/// # Errors
///
/// Returns [`MazeError::PositionMismatch`] if the tile's position doesn't match the insertion coordinates.
/// Returns [`MazeError::TileAlreadyExists`] if a tile already exists at the specified coordinates.
///
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// let mut maze = Maze::new();
///
/// assert_eq!(
/// maze.insert_with_tile(Hex::new(2, 2), Tile::new(Hex::ZERO)),
/// Err(MazeError::PositionMismatch {
/// tile_pos: Hex::ZERO,
/// insert_pos: Hex::new(2, 2)
/// })
/// );
/// let tile = Tile::new(Hex::ZERO);
/// assert_eq!(maze.insert_with_tile(Hex::ZERO, tile.clone()), Ok(tile.clone()));
/// assert_eq!(
/// maze.insert_with_tile(Hex::ZERO, tile.clone()),
/// Err(MazeError::TileAlreadyExists {
/// pos: Hex::ZERO,
/// old_tile: tile
/// })
/// );
/// ```
pub fn insert_with_tile(&mut self, coords: Hex, tile: Tile) -> Result<Tile, MazeError> {
if tile.pos != coords {
return Err(MazeError::PositionMismatch {
tile_pos: tile.pos,
insert_pos: coords,
});
}
self.0
.insert(coords, tile.clone())
.map_or(Ok(tile), |old_tile| {
Err(MazeError::TileAlreadyExists {
pos: coords,
old_tile,
})
})
}
/// Returns a reference to the tile at the specified coordinates.
///
/// # Arguments
///
/// - `coord` - The hexagonal coordinates of the tile to retrieve.
///
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// let mut maze = Maze::new();
/// let coord = Hex::ZERO;
/// maze.insert(coord);
///
/// assert!(maze.get(&coord).is_some());
/// assert!(maze.get(&Hex::new(1, 1)).is_none());
/// ```
#[inline]
#[must_use]
pub fn get(&self, coord: &Hex) -> Option<&Tile> {
self.0.get(coord)
}
#[inline]
#[must_use]
pub fn get_mut(&mut self, coord: &Hex) -> Option<&mut Tile> {
self.0.get_mut(coord)
}
/// Returns an optional mutable reference to the walls at the specified coordinates.
///
/// # Arguments
///
/// - `coord` - The hexagonal coordinates of the tile whose walls to retrieve.
///
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// let mut maze = Maze::new();
/// let coord = Hex::new(0, 0);
/// maze.insert(coord);
///
/// maze.add_tile_wall(&coord, EdgeDirection::FLAT_NORTH);
/// let walls = maze.get_walls(&coord).unwrap();
/// assert!(walls.contains(EdgeDirection::FLAT_NORTH));
/// ```
#[inline]
#[must_use]
pub fn get_walls(&self, coord: &Hex) -> Option<&Walls> {
self.0.get(coord).map(Tile::walls)
}
/// Returns an optional mutable reference to the walls at the specified coordinates.
///
/// # Arguments
///
/// - `coord` - The hexagonal coordinates of the tile whose walls to retrieve.
///
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// let mut maze = Maze::new();
/// let coord = Hex::new(0, 0);
/// maze.insert(coord);
///
/// maze.add_tile_wall(&coord, EdgeDirection::FLAT_NORTH);
/// let mut walls = maze.get_walls_mut(&coord).unwrap();
/// assert!(walls.remove(EdgeDirection::FLAT_NORTH));
/// ```
#[inline]
#[must_use]
pub fn get_walls_mut(&mut self, coord: &Hex) -> Option<&mut Walls> {
self.0.get_mut(coord).map(Tile::walls_mut)
}
/// Returns the number of tiles in the maze.
///
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// let mut maze = Maze::new();
/// assert_eq!(maze.count(), 0);
///
/// maze.insert(Hex::new(0, 0));
/// assert_eq!(maze.count(), 1);
///
/// maze.insert(Hex::new(1, -1));
/// assert_eq!(maze.count(), 2);
/// ```
#[inline]
#[must_use]
pub fn count(&self) -> usize {
self.0.len()
}
/// Returns `true` if the maze contains no tiles.
///
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// let mut maze = Maze::new();
/// assert!(maze.is_empty());
///
/// maze.insert(Hex::ZERO);
/// assert!(!maze.is_empty());
/// ```
#[inline]
#[must_use]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Adds a wall from a tile in the specified direction.
///
/// # Arguments
///
/// - `coord` - The hexagonal coordinates of the tile.
/// - `direction` - The direction of the wall to remove.
///
/// # Errors
///
/// Returns `MazeError::InvalidCoordinate` if the specified coordinate does not exist in the maze.
///
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// // Create a maze with a single tile at the origin
/// let mut tile = Tile::new(Hex::ZERO);
/// tile.walls_mut().toggle(Walls::all_directions());
/// let mut maze = Maze::from([tile]);
///
/// // Initially, the tile should have no walls
/// assert!(maze.get_walls(&Hex::ZERO).unwrap().is_empty());
///
/// // Add a wall to the north
/// assert!(maze.add_tile_wall(&Hex::ZERO, EdgeDirection::FLAT_NORTH).is_ok());
///
/// // Check that the wall was added
/// let walls = maze.get_walls(&Hex::ZERO).unwrap();
/// assert!(walls.contains(EdgeDirection::FLAT_NORTH));
/// assert_eq!(walls.count(), 1);
///
/// // Adding the same wall again should return true (no change)
/// assert_eq!(maze.add_tile_wall(&Hex::ZERO, EdgeDirection::FLAT_NORTH), Ok(true));
///
/// // Adding a wall to a non-existent tile should return an error
/// let invalid_coord = Hex::new(1, 1);
/// assert_eq!(
/// maze.add_tile_wall(&invalid_coord, EdgeDirection::FLAT_NORTH),
/// Err(MazeError::InvalidCoordinate(invalid_coord))
/// );
/// ```
pub fn add_tile_wall(
&mut self,
coord: &Hex,
direction: EdgeDirection,
) -> Result<bool, MazeError> {
self.0
.get_mut(coord)
.map(|tile| tile.walls.insert(direction))
.ok_or(MazeError::InvalidCoordinate(*coord))
}
/// Removes a wall from a tile in the specified direction.
///
/// # Arguments
///
/// - `coord` - The hexagonal coordinates of the tile.
/// - `direction` - The direction of the wall to remove.
///
/// # Errors
///
/// Returns `MazeError::InvalidCoordinate` if the specified coordinate does not exist in the maze.
///
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// let mut maze = Maze::new();
/// let coord = Hex::ZERO;
/// maze.insert(coord);
///
/// maze.add_tile_wall(&coord, EdgeDirection::FLAT_NORTH);
/// maze.remove_tile_wall(&coord, EdgeDirection::FLAT_NORTH);
///
/// let walls = maze.get_walls(&coord).unwrap();
/// assert!(!walls.contains(EdgeDirection::FLAT_NORTH));
/// ```
pub fn remove_tile_wall(
&mut self,
coord: &Hex,
direction: EdgeDirection,
) -> Result<bool, MazeError> {
self.0
.get_mut(coord)
.map(|tile| tile.walls.remove(direction))
.ok_or(MazeError::InvalidCoordinate(*coord))
}
}
impl FromIterator<Hex> for Maze {
fn from_iter<T: IntoIterator<Item = Hex>>(iter: T) -> Self {
Self(iter.into_iter().map(|hex| (hex, Tile::new(hex))).collect())
}
}
impl FromIterator<Tile> for Maze {
fn from_iter<T: IntoIterator<Item = Tile>>(iter: T) -> Self {
Self(iter.into_iter().map(|tile| (tile.pos(), tile)).collect())
}
}
impl FromIterator<(Hex, Tile)> for Maze {
fn from_iter<T: IntoIterator<Item = (Hex, Tile)>>(iter: T) -> Self {
Self(iter.into_iter().collect())
}
}
impl<const N: usize> From<[Hex; N]> for Maze {
fn from(value: [Hex; N]) -> Self {
value.into_iter().collect()
}
}
impl<const N: usize> From<[Tile; N]> for Maze {
fn from(value: [Tile; N]) -> Self {
value.into_iter().collect()
}
}
impl Deref for Maze {
type Target = HashMap<Hex, Tile>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for Maze {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}

84
src/pathfinding.rs Normal file
View File

@ -0,0 +1,84 @@
//! Maze pathfinding implementation for hexagonal grids.
//!
//! This module provides functionality for finding paths through a hexagonal maze
//! using the A* pathfinding algorithm. The maze is represented as a collection of
//! hexagonal cells, where each cell may have walls on any of its six edges.
//!
//! # Examples
//!
//! ```
//! use hexlab::prelude::*;
//!
//! let maze = MazeBuilder::new()
//! .with_radius(3)
//! .with_seed(12345)
//! .build()
//! .expect("Failed to create maze");
//! assert!(maze.find_path(Hex::ZERO, Hex::new(-1, 3)).is_some());
//! ```
//!
//! # Implementation Details
//!
//! The pathfinding algorithm uses Manhattan distance as a heuristic and considers
//! walls between cells when determining valid paths. Each step between adjacent
//! cells has a cost of 1.
use hexx::{EdgeDirection, Hex};
use pathfinding::prelude::*;
use crate::Maze;
impl Maze {
#[must_use]
/// Finds the shortest path between two hexagonal positions in the maze using A* pathfinding.
///
/// This function calculates the optimal path while taking into account walls between cells.
/// The path cost between adjacent cells is always 1, and Manhattan distance is used as the
/// heuristic for pathfinding.
///
/// # Arguments
///
/// * `from` - The starting hexagonal position
/// * `to` - The target hexagonal position
///
/// # Returns
///
/// * `Some(Vec<Hex>)` - A vector of hexagonal positions representing the path from start to target
/// * `None` - If no valid path exists between the positions
///
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// let maze = MazeBuilder::new()
/// .with_radius(3)
/// .with_seed(12345)
/// .build()
/// .expect("Failed to create maze");
/// assert!(maze.find_path(Hex::ZERO, Hex::new(-1, 3)).is_some());
/// ```
pub fn find_path(&self, from: Hex, to: Hex) -> Option<Vec<Hex>> {
let successors = |pos: &Hex| {
{
EdgeDirection::ALL_DIRECTIONS.iter().filter_map(|&dir| {
let neighbor = pos.neighbor(dir);
if let Some(current_tile) = self.get(pos) {
if self.get(&neighbor).is_some() && !current_tile.walls.contains(dir) {
return Some((neighbor, 1)); // Cost of 1 for each step
}
}
None
})
}
.collect::<Vec<_>>()
};
let heuristic = |pos: &Hex| {
// Manhatan distance
let diff = *pos - to;
(diff.x.abs() + diff.y.abs() + diff.z().abs()) / 2
};
astar(&from, successors, heuristic, |pos| *pos == to).map(|(path, _)| path)
}
}

250
src/tile.rs Normal file
View File

@ -0,0 +1,250 @@
use super::Walls;
#[cfg(feature = "bevy_reflect")]
use crate::traits::WorldPositionable;
use crate::traits::{TilePosition, WallStorage};
#[cfg(feature = "bevy")]
use bevy::prelude::*;
use hexx::Hex;
#[cfg(feature = "bevy_reflect")]
use hexx::HexLayout;
use std::fmt::Display;
/// Represents a single hexagonal tile in the maze
///
/// Each tile has a position and a set of walls defining its boundaries.
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
#[cfg_attr(feature = "bevy", derive(Component))]
#[cfg_attr(feature = "bevy", reflect(Component))]
#[derive(Debug, Clone, Default, PartialEq, Eq)]
pub struct Tile {
pub(crate) pos: Hex,
pub(crate) walls: Walls,
}
impl TilePosition for Tile {
/// Returns position of the tile
///
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// let tile = Tile::new(Hex::new(2, -2));
/// assert_eq!(tile.pos(), Hex::new(2, -2));
/// ```
#[inline]
fn pos(&self) -> Hex {
self.pos
}
}
impl WallStorage for Tile {
/// Returns an immutable reference to the tile's walls
///
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// let tile = Tile::new(Hex::ZERO);
/// assert_eq!(*tile.walls(), Walls::default());
/// ```
#[inline]
fn walls(&self) -> &Walls {
&self.walls
}
/// Returns a mutable reference to the tile's walls
///
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// let tile = Tile::new(Hex::ZERO);
/// assert_eq!(*tile.walls(), Walls::default());
/// ```
#[inline]
fn walls_mut(&mut self) -> &mut Walls {
&mut self.walls
}
}
#[cfg(feature = "bevy_reflect")]
impl WorldPositionable for Tile {
/// Converts the tile's position to a 2D vector based on the given layout.
///
/// # Arguments
///
/// - `layout` - The hexagonal layout used for conversion.
#[inline]
fn to_vec2(&self, layout: &HexLayout) -> glam::Vec2 {
layout.hex_to_world_pos(self.pos)
}
/// Converts the tile's position to a 3D vector based on the given layout.
///
/// # Arguments
///
/// - `layout` - The hexagonal layout used for conversion.
#[inline]
fn to_vec3(&self, layout: &HexLayout) -> glam::Vec3 {
let pos = self.to_vec2(layout);
glam::Vec3::new(pos.x, 0., pos.y)
}
}
impl Tile {
/// Creates a new tile with the given position and default walls.
///
/// # Arguments
///
/// - `pos` - The hexagonal coordinates of the tile.
///
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// let tile = Tile::new(Hex::new(1, -1));
/// assert_eq!(tile.pos(), Hex::new(1, -1));
/// assert_eq!(*tile.walls(), Walls::default());
/// ```
#[must_use]
pub fn new(pos: Hex) -> Self {
Self {
pos,
walls: Walls::default(),
}
}
}
impl From<Hex> for Tile {
fn from(value: Hex) -> Self {
Self {
pos: value,
walls: Walls::default(),
}
}
}
impl Display for Tile {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "({},{})", self.pos.x, self.pos.y)
}
}
#[cfg(test)]
mod test {
use super::*;
use hexx::EdgeDirection;
use rand::{thread_rng, Rng};
fn random_hex() -> Hex {
let mut rng = thread_rng();
Hex::new(rng.gen(), rng.gen())
}
#[test]
fn different_positions() {
let positions = [Hex::ZERO, Hex::new(1, 0), Hex::new(-1, 1), Hex::new(2, -2)];
// Create tiles at different positions
let tiles = positions
.iter()
.map(|&pos| Tile::new(pos))
.collect::<Vec<_>>();
// Verify each tile has correct position
for (tile, &pos) in tiles.iter().zip(positions.iter()) {
assert_eq!(tile.pos, pos);
}
}
#[test]
fn hex_boundaries() {
// Test with extreme coordinate values
let extreme_positions = [
Hex::new(i32::MAX, i32::MIN),
Hex::new(i32::MIN, i32::MAX),
Hex::new(0, i32::MAX),
Hex::new(i32::MIN, 0),
];
for pos in extreme_positions {
let tile = Tile::new(pos);
assert_eq!(tile.pos, pos);
}
}
#[test]
fn hex_tile_creation_and_properties() {
let hex = random_hex();
let tile = Tile::new(hex);
assert_eq!(tile.pos(), hex);
assert!(tile.walls().is_enclosed());
}
#[test]
fn hex_tile_from_hex() {
let hex = random_hex();
let tile = Tile::from(hex);
assert_eq!(tile.pos, hex);
assert_eq!(tile.walls, Walls::default());
}
#[test]
fn hex_hex_into_tile() {
let hex = random_hex();
let tile: Tile = hex.into();
assert_eq!(tile.pos, hex);
assert_eq!(tile.walls, Walls::default());
}
#[test]
fn hex_tile_display() {
let tile = Tile::new(Hex::new(3, -3));
assert_eq!(format!("{tile}"), "(3,-3)");
}
#[test]
fn hex_tile_wall_modifications() {
let mut tile = Tile::new(Hex::ZERO);
for direction in EdgeDirection::ALL_DIRECTIONS {
tile.walls.insert(direction);
}
assert_eq!(tile.walls.count(), 6);
for direction in EdgeDirection::ALL_DIRECTIONS {
tile.walls.remove(direction);
}
assert_eq!(tile.walls.count(), 0);
}
#[cfg(feature = "bevy_reflect")]
mod bevy_tests {
use super::*;
use glam::{Vec2, Vec3};
#[test]
fn hex_tile_to_vec2() {
let layout = HexLayout::default();
let tile = Tile::new(Hex::new(1, 0));
let vec2 = tile.to_vec2(&layout);
assert_eq!(vec2, Vec2::new(1.5, -0.866_025_4));
}
#[test]
fn hex_tile_to_vec3() {
let layout = HexLayout::default();
let tile = Tile::new(Hex::new(0, 1));
let vec3 = tile.to_vec3(&layout);
assert_eq!(vec3, Vec3::new(0.0, 0.0, -1.732_050_8));
}
}
}

22
src/traits.rs Normal file
View File

@ -0,0 +1,22 @@
use crate::Walls;
use hexx::Hex;
pub trait TilePosition {
/// Returns position of the tile
#[must_use]
fn pos(&self) -> Hex;
}
#[cfg(feature = "bevy_reflect")]
pub trait WorldPositionable {
#[must_use]
fn to_vec2(&self, layout: &hexx::HexLayout) -> glam::Vec2;
#[must_use]
fn to_vec3(&self, layout: &hexx::HexLayout) -> glam::Vec3;
}
pub trait WallStorage {
#[must_use]
fn walls(&self) -> &Walls;
fn walls_mut(&mut self) -> &mut Walls;
}

View File

@ -1,5 +1,5 @@
#[cfg(feature = "bevy")]
use bevy::prelude::{Component, Reflect, ReflectComponent};
use bevy::prelude::*;
use hexx::EdgeDirection;
/// A bit-flag representation of walls in a hexagonal tile.
@ -11,41 +11,27 @@ use hexx::EdgeDirection;
/// # Examples
///
/// Creating and manipulating walls:
/// ```rust
/// ```
/// use hexlab::prelude::*;
///
/// // Create a hexagon with all walls
/// let walls = Walls::new();
/// assert!(walls.is_closed());
/// assert!(walls.is_enclosed());
///
/// // Create a hexagon with no walls
/// let mut walls = Walls::empty();
/// assert!(walls.is_empty());
///
/// // Add specific walls
/// walls.add(EdgeDirection::FLAT_NORTH);
/// walls.add(EdgeDirection::FLAT_SOUTH);
/// walls.insert(EdgeDirection::FLAT_NORTH);
/// walls.insert(EdgeDirection::FLAT_SOUTH);
/// assert_eq!(walls.count(), 2);
/// ```
///
/// Using walls in game logic:
///
/// ```rust
/// use hexlab::prelude::*;
/// let mut walls = Walls::empty();
///
/// // Add walls to create a corner
/// walls.add(EdgeDirection::FLAT_NORTH);
/// walls.add(EdgeDirection::FLAT_SOUTH_EAST);
///
/// // Check if a specific direction has a wall
/// assert!(walls.contains(EdgeDirection::FLAT_NORTH));
/// assert!(!walls.contains(EdgeDirection::FLAT_SOUTH));
/// ```
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "bevy", derive(Reflect, Component))]
#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
#[cfg_attr(feature = "bevy", derive(Component))]
#[cfg_attr(feature = "bevy", reflect(Component))]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Walls(u8);
impl Walls {
@ -55,12 +41,11 @@ impl Walls {
///
/// # Examples
///
/// ```rust
/// ```
/// use hexlab::prelude::*;
///
/// let walls = Walls::new();
/// assert!(walls.is_closed());
/// assert_eq!(walls.count(), 6);
/// assert!(walls.is_enclosed());
/// ```
#[inline]
#[must_use]
@ -72,12 +57,11 @@ impl Walls {
///
/// # Examples
///
/// ```rust
/// ```
/// use hexlab::prelude::*;
///
/// let walls = Walls::empty();
/// assert!(walls.is_empty());
/// assert_eq!(walls.count(), 0);
/// ```
#[inline]
#[must_use]
@ -85,19 +69,15 @@ impl Walls {
Self(0)
}
/// Checks if the walls are currently empty
/// Checks if the walls are currently empty (no walls present).
///
/// Returns `true` if all directions have no walls set.
/// # Examples
///
/// ```rust
/// ```
/// use hexlab::prelude::*;
///
/// let walls = Walls::empty();
/// assert!(walls.is_empty());
///
/// let walls = Walls::new();
/// assert!(!walls.is_empty());
/// ```
#[inline]
#[must_use]
@ -105,98 +85,118 @@ impl Walls {
self.0 == 0
}
/// Adds a wall in the specified direction
/// Insert a wall in the specified direction.
///
/// This method uses bitwise operations to efficiently set the wall flag
/// for the given direction. Multiple walls can be added to the same hexagon.
/// # Arguments
///
/// - `direction` - The direction in which to insert the wall.
///
/// # Returns
///
/// Returns `true` if a wall was present, `false` otherwise.
///
/// # Examples
///
/// ```rust
/// ```
/// use hexlab::prelude::*;
///
/// let mut walls = Walls::empty();
/// walls.add(EdgeDirection::FLAT_NORTH);
/// assert!(walls.contains(EdgeDirection::FLAT_NORTH));
/// assert!(!walls.contains(EdgeDirection::FLAT_SOUTH));
/// assert_eq!(walls.count(), 0);
///
/// walls.add(EdgeDirection::FLAT_SOUTH);
/// assert!(walls.contains(EdgeDirection::FLAT_SOUTH));
/// assert!(!walls.insert(1));
/// assert_eq!(walls.count(), 1);
///
/// assert!(walls.insert(1));
/// assert_eq!(walls.count(), 1);
///
/// assert!(!walls.insert(EdgeDirection::FLAT_NORTH));
/// assert_eq!(walls.count(), 2);
/// ```
#[inline]
pub fn add<T>(&mut self, direction: T)
pub fn insert<T>(&mut self, direction: T) -> bool
where
T: Into<Self> + Copy,
T: Into<Self>,
{
self.0 |= direction.into().0;
let mask = direction.into().0;
let was_present = self.0 & mask != 0;
self.0 |= mask;
was_present
}
/// Removes a wall in the specified direction
/// Removes a wall in the specified direction.
///
/// Returns `true` if a wall was actually removed, `false` if there was no wall
/// in the specified direction.
/// # Arguments
///
/// # Exmaples
/// - `direction` - The direction from which to remove the wall.
///
/// ```rust
/// # Returns
///
/// Returns `true` if a wall was present and removed, `false` otherwise.
///
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// let mut walls = Walls::new();
/// assert!(walls.remove(EdgeDirection::FLAT_NORTH));
/// assert!(!walls.contains(EdgeDirection::FLAT_NORTH));
///
/// // Removing a non-existent wall returns false
/// assert!(!walls.remove(EdgeDirection::FLAT_NORTH));
/// assert!(walls.remove(1));
/// assert_eq!(walls.count(), 5);
///
/// assert!(!walls.remove(1));
/// assert_eq!(walls.count(), 5);
///
/// assert!(walls.remove(EdgeDirection::FLAT_NORTH));
/// assert_eq!(walls.count(), 4);
/// ```
#[inline]
pub fn remove<T>(&mut self, direction: T) -> bool
where
T: Into<Self> + Copy,
T: Into<Self>,
{
let was_removed = self.contains(direction);
if was_removed {
self.0 &= !direction.into().0;
}
was_removed
let mask = direction.into().0;
let was_present = self.0 & mask != 0;
self.0 &= !mask;
was_present
}
/// Returns true if there is a wall in the specified direction
/// Checks if there is a wall in the specified direction.
///
/// Uses efficient bitwise operations to check for the presence of a wall.
/// # Arguments
///
/// # Exmaples
/// - `other` - The direction to check for a wall.
///
/// ```rust
/// # Examples
///
/// ```
/// use hexlab::prelude::*;
///
/// let mut walls = Walls::empty();
/// walls.insert(EdgeDirection::FLAT_NORTH);
///
/// walls.add(EdgeDirection::FLAT_NORTH);
/// assert!(walls.contains(EdgeDirection::FLAT_NORTH));
/// assert!(!walls.contains(EdgeDirection::FLAT_SOUTH));
/// ```
#[inline]
pub fn contains<T>(&self, other: T) -> bool
pub fn contains<T>(&self, direction: T) -> bool
where
T: Into<Self> + Copy,
T: Into<Self>,
{
self.0 & other.into().0 != 0
self.0 & direction.into().0 != 0
}
/// Returns the raw bit representation of the walls
///
/// This method provides access to the underlying bit flags for advanced usage.
/// The bits are ordered according to the `EdgeDirection` indices.
/// # Examples
///
/// # Exmaples
///
/// ```rust
/// ```
/// use hexlab::prelude::*;
///
/// let mut walls = Walls::new();
/// let walls = Walls::new();
/// assert_eq!(walls.as_bits(), 0b11_1111);
///
/// assert_eq!(walls.as_bits(), 0b111111);
/// let walls = Walls::empty();
/// assert_eq!(walls.as_bits(), 0);
/// ```
#[inline]
#[must_use]
@ -206,19 +206,18 @@ impl Walls {
/// Returns the total number of walls present
///
/// Efficiently counts the number of set bits in the internal representation.
/// # Examples
///
/// # Exmaples
///
/// ```rust
/// ```
/// use hexlab::prelude::*;
///
/// let mut walls = Walls::empty();
/// assert!(walls.is_empty());
///
/// assert_eq!(walls.count(), 0);
/// walls.insert(0);
/// assert_eq!(walls.count(), 1);
///
/// walls.add(EdgeDirection::FLAT_NORTH);
/// walls.add(EdgeDirection::FLAT_SOUTH);
/// walls.insert(1);
/// assert_eq!(walls.count(), 2);
/// ```
#[inline]
@ -227,19 +226,14 @@ impl Walls {
u8::try_from(self.0.count_ones()).unwrap_or_default()
}
/// Returns all possible directions as a `Walls` value
/// Returns a `Walls` value representing all possible directions.
///
/// This represents a hexagon with walls in all six directions.
/// # Examples
///
/// # Exmaples
///
/// ```rust
/// ```
/// use hexlab::prelude::*;
///
/// let all_walls = Walls::all_directions();
///
/// assert_eq!(all_walls.count(), 6);
/// assert!(all_walls.is_closed());
/// assert_eq!(Walls::all_directions().as_bits(), 0b11_1111);
/// ```
#[inline]
#[must_use]
@ -251,59 +245,58 @@ impl Walls {
///
/// If a wall exists in the given direction, it will be removed.
/// If no wall exists, one will be added.
/// Returns the previous state (`true` if a wall was present).
///
/// # Arguments
///
/// - `direction` - The direction in which to toggle the wall.
///
/// # Returns
///
/// The previous state (`true` if a wall was present before toggling, `false` otherwise).
///
/// # Examples
///
/// ```rust
/// ```
/// use hexlab::prelude::*;
///
/// let mut walls = Walls::empty();
///
/// assert!(!walls.toggle(EdgeDirection::FLAT_NORTH)); // Returns false, wall was not present
/// assert!(walls.contains(EdgeDirection::FLAT_NORTH)); // Wall is now present
/// assert!(!walls.toggle(0));
/// assert_eq!(walls.count(), 1);
///
/// let mut walls = Walls::new();
///
/// assert!(walls.toggle(EdgeDirection::FLAT_NORTH)); // Returns true, wall was present
/// assert!(!walls.contains(EdgeDirection::FLAT_NORTH)); // Wall is now removed
/// assert!(walls.toggle(0));
/// assert_eq!(walls.count(), 0);
/// ```
pub fn toggle<T>(&mut self, direction: T) -> bool
where
T: Into<Self> + Copy,
{
let is_present = self.contains(direction);
if is_present {
self.remove(direction);
} else {
self.add(direction);
}
is_present
let mask = direction.into().0;
let was_present = self.0 & mask != 0;
self.0 ^= mask;
was_present
}
/// Checks if walls are present in all six directions.
///
/// Returns `true` if the hexagon has all possible walls, making it completely enclosed.
/// # Returns
///
/// `true` if the hexagon has all possible walls, making it completely enclosed.
///
/// # Examples
///
/// ```rust
/// ```
/// use hexlab::prelude::*;
///
/// let walls = Walls::new();
/// assert!(walls.is_closed());
/// let mut walls = Walls::new();
/// assert!(walls.is_enclosed());
///
/// let mut walls = Walls::empty();
/// assert!(!walls.is_closed());
/// // Add all walls manually
/// for direction in EdgeDirection::iter() {
/// walls.add(direction);
/// }
/// assert!(walls.is_closed());
/// walls.remove(0);
/// assert!(!walls.is_enclosed());
/// ```
#[inline]
#[must_use]
pub fn is_closed(&self) -> bool {
pub fn is_enclosed(&self) -> bool {
self.count() == 6
}
@ -312,15 +305,19 @@ impl Walls {
/// This method efficiently adds multiple walls in a single operation while
/// preserving any existing walls not specified in the input.
///
/// # Arguments
///
/// - `other` - The walls to insert, specified as a `Walls` instance or any type
/// that can be converted into `Walls`.
///
///
/// # Examples
///
/// ```rust
/// ```
/// use hexlab::prelude::*;
///
/// let mut walls = Walls::empty();
/// walls.add(EdgeDirection::FLAT_NORTH);
///
/// walls.fill([EdgeDirection::FLAT_SOUTH, EdgeDirection::FLAT_SOUTH_EAST]);
/// walls.fill([EdgeDirection::FLAT_NORTH ,EdgeDirection::FLAT_SOUTH, EdgeDirection::FLAT_SOUTH_EAST]);
///
/// assert!(walls.contains(EdgeDirection::FLAT_SOUTH));
/// assert_eq!(walls.count(), 3);
@ -369,16 +366,16 @@ impl Default for Walls {
}
#[cfg(test)]
mod tests {
mod test {
use super::*;
// all_directions
#[test]
fn all_directions_creates_closed_walls() {
let walls = Walls::all_directions();
assert!(walls.is_closed());
assert!(walls.is_enclosed());
assert!(!walls.is_empty());
assert_eq!(walls.as_bits(), 0b111111);
assert_eq!(walls.as_bits(), 0b11_1111);
}
// as_bits
@ -391,30 +388,30 @@ mod tests {
#[test]
fn as_bits_single_wall() {
let mut walls = Walls::empty();
walls.add(EdgeDirection::FLAT_NORTH);
assert_eq!(walls.as_bits(), 0b010000);
walls.insert(EdgeDirection::FLAT_NORTH);
assert_eq!(walls.as_bits(), 0b01_0000);
}
#[test]
fn as_bits_multiple_walls() {
let mut walls = Walls::empty();
walls.add(EdgeDirection::FLAT_NORTH);
walls.add(EdgeDirection::FLAT_SOUTH);
assert_eq!(walls.as_bits(), 0b010010);
walls.insert(EdgeDirection::FLAT_NORTH);
walls.insert(EdgeDirection::FLAT_SOUTH);
assert_eq!(walls.as_bits(), 0b01_0010);
}
#[test]
fn as_bits_all_walls() {
let walls = Walls::new();
assert_eq!(walls.as_bits(), 0b111111);
assert_eq!(walls.as_bits(), 0b11_1111);
}
// new
#[test]
fn new_created_closed_walls() {
let walls = Walls::new();
assert!(walls.is_closed());
assert_eq!(walls.as_bits(), 0b111111);
assert!(walls.is_enclosed());
assert_eq!(walls.as_bits(), 0b11_1111);
}
// empty
@ -425,11 +422,11 @@ mod tests {
assert_eq!(walls.as_bits(), 0);
}
// add
// insert
#[test]
fn add_single_wall() {
fn insert_single_wall() {
let mut walls = Walls::empty();
walls.add(EdgeDirection::FLAT_NORTH);
walls.insert(EdgeDirection::FLAT_NORTH);
assert!(walls.contains(EdgeDirection::FLAT_NORTH));
assert_eq!(walls.count(), 1);
}
@ -446,13 +443,13 @@ mod tests {
fn remove_nonexistent_wall() {
let mut walls = Walls::empty();
assert!(!walls.remove(EdgeDirection::FLAT_NORTH));
walls.add(EdgeDirection::FLAT_NORTH);
walls.insert(EdgeDirection::FLAT_NORTH);
assert!(walls.remove(EdgeDirection::FLAT_NORTH));
}
// toggle
#[test]
fn toggle_adds_wall() {
fn toggle_wall() {
let mut walls = Walls::empty();
assert!(!walls.toggle(EdgeDirection::FLAT_NORTH));
assert!(walls.contains(EdgeDirection::FLAT_NORTH));
@ -478,7 +475,7 @@ mod tests {
#[test]
fn fill_preserves_existing_walls() {
let mut walls = Walls::empty();
walls.add(EdgeDirection::FLAT_NORTH);
walls.insert(EdgeDirection::FLAT_NORTH);
walls.fill([EdgeDirection::FLAT_SOUTH, EdgeDirection::FLAT_SOUTH_EAST]);
assert!(walls.contains(EdgeDirection::FLAT_NORTH));
assert!(walls.contains(EdgeDirection::FLAT_SOUTH));
@ -522,8 +519,8 @@ mod tests {
#[test]
fn default_creates_closed_walls() {
let walls = Walls::default();
assert!(walls.is_closed());
assert_eq!(walls.as_bits(), 0b111111);
assert!(walls.is_enclosed());
assert_eq!(walls.as_bits(), 0b11_1111);
}
#[test]
@ -544,54 +541,54 @@ mod tests {
let mut walls = Walls::empty();
// Test single bit operations
walls.add(EdgeDirection::FLAT_NORTH);
assert_eq!(walls.as_bits(), 0b010000);
walls.insert(EdgeDirection::FLAT_NORTH);
assert_eq!(walls.as_bits(), 0b01_0000);
walls.add(EdgeDirection::FLAT_SOUTH);
assert_eq!(walls.as_bits(), 0b010010);
walls.insert(EdgeDirection::FLAT_SOUTH);
assert_eq!(walls.as_bits(), 0b01_0010);
// Test removing middle bit
walls.add(EdgeDirection::FLAT_SOUTH_EAST);
assert_eq!(walls.as_bits(), 0b010011);
walls.insert(EdgeDirection::FLAT_SOUTH_EAST);
assert_eq!(walls.as_bits(), 0b01_0011);
walls.remove(EdgeDirection::FLAT_SOUTH);
assert_eq!(walls.as_bits(), 0b010001);
assert_eq!(walls.as_bits(), 0b01_0001);
}
// From<EdgeDirection> tests
#[test]
fn from_edge_direction_flat_south_east() {
let walls = Walls::from(EdgeDirection::FLAT_SOUTH_EAST);
assert_eq!(walls.as_bits(), 0b000001);
assert_eq!(walls.as_bits(), 0b00_0001);
}
#[test]
fn from_edge_direction_flat_south() {
let walls = Walls::from(EdgeDirection::FLAT_SOUTH);
assert_eq!(walls.as_bits(), 0b000010);
assert_eq!(walls.as_bits(), 0b00_0010);
}
#[test]
fn from_edge_direction_flat_south_west() {
let walls = Walls::from(EdgeDirection::FLAT_SOUTH_WEST);
assert_eq!(walls.as_bits(), 0b000100);
assert_eq!(walls.as_bits(), 0b00_0100);
}
#[test]
fn from_edge_direction_flat_north_west() {
let walls = Walls::from(EdgeDirection::FLAT_NORTH_WEST);
assert_eq!(walls.as_bits(), 0b001000);
assert_eq!(walls.as_bits(), 0b00_1000);
}
#[test]
fn from_edge_direction_flat_north() {
let walls = Walls::from(EdgeDirection::FLAT_NORTH);
assert_eq!(walls.as_bits(), 0b010000);
assert_eq!(walls.as_bits(), 0b01_0000);
}
#[test]
fn from_edge_direction_flat_east() {
let walls = Walls::from(EdgeDirection::FLAT_NORTH_EAST);
assert_eq!(walls.as_bits(), 0b100000);
assert_eq!(walls.as_bits(), 0b10_0000);
}
// FromIterator tests
@ -606,7 +603,7 @@ mod tests {
let walls = vec![EdgeDirection::FLAT_SOUTH]
.into_iter()
.collect::<Walls>();
assert_eq!(walls.as_bits(), 0b000010);
assert_eq!(walls.as_bits(), 0b00_0010);
}
#[test]
@ -614,7 +611,7 @@ mod tests {
let walls = vec![EdgeDirection::FLAT_NORTH, EdgeDirection::FLAT_SOUTH]
.into_iter()
.collect::<Walls>();
assert_eq!(walls.as_bits(), 0b010010);
assert_eq!(walls.as_bits(), 0b01_0010);
}
#[test]
@ -626,13 +623,13 @@ mod tests {
]
.into_iter()
.collect::<Walls>();
assert_eq!(walls.as_bits(), 0b010010);
assert_eq!(walls.as_bits(), 0b01_0010);
}
#[test]
fn from_iterator_all_directions() {
let walls = EdgeDirection::iter().collect::<Walls>();
assert_eq!(walls.as_bits(), 0b111111);
assert_eq!(walls.as_bits(), 0b11_1111);
}
// From<[EdgeDirection; N]> tests
@ -645,13 +642,13 @@ mod tests {
#[test]
fn from_array_single() {
let walls = Walls::from([EdgeDirection::FLAT_NORTH]);
assert_eq!(walls.as_bits(), 0b010000);
assert_eq!(walls.as_bits(), 0b01_0000);
}
#[test]
fn from_array_multiple() {
let walls = Walls::from([EdgeDirection::FLAT_NORTH, EdgeDirection::FLAT_SOUTH]);
assert_eq!(walls.as_bits(), 0b010010);
assert_eq!(walls.as_bits(), 0b01_0010);
}
#[test]
@ -661,7 +658,7 @@ mod tests {
EdgeDirection::FLAT_NORTH,
EdgeDirection::FLAT_SOUTH,
]);
assert_eq!(walls.as_bits(), 0b010010);
assert_eq!(walls.as_bits(), 0b01_0010);
}
#[test]
@ -674,6 +671,6 @@ mod tests {
EdgeDirection::FLAT_SOUTH_WEST,
EdgeDirection::FLAT_NORTH_WEST,
]);
assert_eq!(walls.as_bits(), 0b111111);
assert_eq!(walls.as_bits(), 0b11_1111);
}
}

124
tests/builder.rs Normal file
View File

@ -0,0 +1,124 @@
use claims::{assert_err, assert_gt, assert_matches, assert_ok, assert_some};
use hexlab::prelude::*;
use rstest::rstest;
#[rstest]
#[case(1, 7)]
#[case(2, 19)]
#[case(3, 37)]
#[case(4, 61)]
#[case(5, 91)]
fn maze_size(#[case] radius: u16, #[case] expected_size: usize) {
let maze = assert_ok!(MazeBuilder::new().with_radius(radius).build());
assert_eq!(maze.count(), expected_size);
}
#[test]
fn builder_without_radius() {
let result = MazeBuilder::new().build();
assert_err!(&result);
assert_matches!(result, Err(MazeBuilderError::NoRadius));
}
#[rstest]
#[case(Hex::ZERO)]
#[case(Hex::new(1,-1))]
#[case(Hex::new(-2,1))]
fn valid_start_position(#[case] start_pos: Hex) {
let maze = assert_ok!(MazeBuilder::new()
.with_radius(3)
.with_start_position(start_pos)
.build());
assert_some!(maze.get(&start_pos));
}
#[test]
fn invalid_start_position() {
let maze = MazeBuilder::new()
.with_radius(3)
.with_start_position(Hex::new(10, 10))
.build();
assert_err!(&maze);
assert_matches!(maze, Err(MazeBuilderError::InvalidStartPosition(_)));
}
#[test]
fn maze_with_seed() {
let maze1 = assert_ok!(MazeBuilder::new().with_radius(3).with_seed(12345).build());
let maze2 = assert_ok!(MazeBuilder::new().with_radius(3).with_seed(12345).build());
assert_eq!(maze1, maze2, "Mazes with the same seed should be identical");
}
#[test]
fn different_seeds_produce_different_mazes() {
let maze1 = assert_ok!(MazeBuilder::new().with_radius(3).with_seed(12345).build());
let maze2 = assert_ok!(MazeBuilder::new().with_radius(3).with_seed(54321).build());
assert_ne!(
maze1, maze2,
"Mazes with different seeds should be different"
);
}
#[test]
fn maze_connectivity() {
let maze = assert_ok!(MazeBuilder::new().with_radius(3).build());
// Helper function to count accessible neighbors
let count_accessible_neighbors = |pos: Hex| -> usize {
hexx::EdgeDirection::ALL_DIRECTIONS
.iter()
.filter(|&&dir| {
let neighbor = pos + dir;
maze.get_walls(&pos)
.is_some_and(|walls| !walls.contains(dir) && maze.get(&neighbor).is_some())
})
.count()
};
// Check that each tile has at least one connection
for &pos in maze.keys() {
let accessible_neighbors = count_accessible_neighbors(pos);
assert_gt!(
accessible_neighbors,
0,
"Tile at {pos:?} has no accessible neighbors",
);
}
}
#[test]
fn maze_boundaries() {
let radius = 3;
let maze = assert_ok!(MazeBuilder::new().with_radius(radius).build());
let radius = i32::from(radius);
// Test that tiles exist within the radius
for q in -radius..=radius {
for r in -radius..=radius {
let pos = Hex::new(q, r);
if q.abs() + r.abs() <= radius {
assert!(
maze.get(&pos).is_some(),
"Expected tile at {pos:?} to exist",
);
}
}
}
}
#[rstest]
#[case(GeneratorType::RecursiveBacktracking)]
fn generate_maze_with_different_types(#[case] generator: GeneratorType) {
// TODO: Add more generator types when they become available
let maze = assert_ok!(MazeBuilder::new()
.with_radius(3)
.with_generator(generator)
.build());
assert_gt!(maze.count(), 0);
}

66
tests/generator.rs Normal file
View File

@ -0,0 +1,66 @@
use claims::assert_some;
use hexlab::prelude::*;
use rstest::rstest;
#[rstest]
#[case(GeneratorType::RecursiveBacktracking, None, None)]
#[case(GeneratorType::RecursiveBacktracking, Some(Hex::new(1, -1)), None)]
#[case(GeneratorType::RecursiveBacktracking, None, Some(12345))]
fn generator_type(
#[case] generator: GeneratorType,
#[case] start_pos: Option<Hex>,
#[case] seed: Option<u64>,
) {
let mut maze = Maze::new();
for q in -3..=3 {
for r in -3..=3 {
let hex = Hex::new(q, r);
if hex.length() <= 3 {
maze.insert(hex);
}
}
}
let initial_size = maze.count();
generator.generate(&mut maze, start_pos, seed);
assert_eq!(maze.count(), initial_size, "Maze size should not change");
// Check maze connectivity
let start = start_pos.unwrap_or(Hex::ZERO);
let mut to_visit = vec![start];
let mut visited = std::collections::HashSet::new();
while let Some(current) = to_visit.pop() {
if !visited.insert(current) {
continue;
}
for dir in EdgeDirection::ALL_DIRECTIONS {
let neighbor = current + dir;
if let Some(walls) = maze.get_walls(&current) {
if !walls.contains(dir) && maze.get(&neighbor).is_some() {
to_visit.push(neighbor);
}
}
}
}
assert_eq!(visited.len(), maze.count(), "All tiles should be connected");
// Check that each tile has at least one open wall
for &pos in maze.keys() {
let walls = assert_some!(maze.get_walls(&pos));
assert!(
walls.count() < 6,
"Tile at {pos:?} should have at least one open wall",
);
}
}
#[test]
fn test_empty_maze() {
let mut maze = Maze::new();
GeneratorType::RecursiveBacktracking.generate(&mut maze, None, None);
assert!(
maze.is_empty(),
"Empty maze should remain empty after generation"
);
}

68
tests/maze.rs Normal file
View File

@ -0,0 +1,68 @@
use claims::assert_some;
use hexlab::prelude::*;
#[test]
fn hex_maze_creation_and_basic_operations() {
let mut maze = Maze::new();
assert!(maze.is_empty());
let center = Hex::ZERO;
maze.insert(center);
assert_eq!(maze.count(), 1);
assert!(!maze.is_empty());
let tile = assert_some!(maze.get(&center));
assert_eq!(tile.pos(), center);
}
#[test]
fn hex_maze_wall_operations() {
let mut maze = Maze::new();
let center = Hex::ZERO;
maze.insert(center);
// Add walls
for direction in EdgeDirection::ALL_DIRECTIONS {
let _ = maze.add_tile_wall(&center, direction);
}
let walls = assert_some!(maze.get_walls(&center));
assert_eq!(walls.count(), 6);
// Remove walls
for direction in EdgeDirection::ALL_DIRECTIONS {
let _ = maze.remove_tile_wall(&center, direction);
}
let walls = assert_some!(maze.get_walls(&center));
assert_eq!(walls.count(), 0);
}
#[test]
fn hex_maze_multiple_tiles() {
let mut maze = Maze::new();
let tiles = [Hex::ZERO, Hex::new(1, -1), Hex::new(0, 1), Hex::new(-1, 1)];
for &tile in &tiles {
maze.insert(tile);
}
assert_eq!(maze.count(), tiles.len());
for &tile in &tiles {
assert!(maze.get(&tile).is_some());
}
}
#[test]
fn hex_maze_edge_cases() {
let mut maze = Maze::new();
let non_existent = Hex::new(10, 10);
// Operations on non-existent tiles should not panic
let _ = maze.add_tile_wall(&non_existent, EdgeDirection::FLAT_NORTH);
let _ = maze.remove_tile_wall(&non_existent, EdgeDirection::FLAT_NORTH);
assert!(maze.get(&non_existent).is_none());
assert!(maze.get_walls(&non_existent).is_none());
}

79
tests/pathfinding.rs Normal file
View File

@ -0,0 +1,79 @@
use claims::*;
use hexlab::MazeBuilder;
use hexx::{hex, EdgeDirection, Hex};
#[test]
fn basic_path() {
let maze = assert_ok!(MazeBuilder::new().with_seed(12345).with_radius(5).build());
let start = Hex::new(0, 0);
let goal = Hex::new(2, 0);
assert_some_eq!(
maze.find_path(start, goal),
vec![start, hex(1, 0), hex(1, 1), hex(2, 1), goal]
);
}
#[test]
fn path_with_walls() {
let mut maze = assert_ok!(MazeBuilder::new().with_seed(12345).with_radius(5).build());
let start = Hex::new(0, 0);
let goal = Hex::new(2, 0);
// Block direct path with wall
assert_ok!(maze.add_tile_wall(&start, EdgeDirection::FLAT_SOUTH));
// Should find alternative path or no path
let path = maze.find_path(start, goal);
if let Some(path) = path {
// If path exists, verify it's valid
assert!(path.len() > 3); // Should be longer than direct path
assert_eq!(path.first(), Some(&start));
assert_eq!(path.last(), Some(&goal));
}
}
#[test]
fn path_to_self() {
let maze = assert_ok!(MazeBuilder::new().with_seed(12345).with_radius(5).build());
let pos = Hex::new(0, 0);
assert_some_eq!(maze.find_path(pos, pos), vec![pos]);
}
#[test]
fn no_path_exists() {
let mut maze = assert_ok!(MazeBuilder::new().with_seed(12345).with_radius(5).build());
let start = Hex::new(0, 0);
let goal = Hex::new(2, 0);
// Surround start with walls
for dir in EdgeDirection::ALL_DIRECTIONS {
assert_ok!(maze.add_tile_wall(&start, dir));
}
assert_none!(maze.find_path(start, goal));
}
#[test]
fn path_in_larger_maze() {
let maze = assert_ok!(MazeBuilder::new().with_seed(12345).with_radius(10).build());
let start = Hex::new(-5, -5);
let goal = Hex::new(5, 5);
let path = assert_some!(maze.find_path(start, goal));
// Basic path properties
assert_eq!(path.first(), Some(&start));
assert_eq!(path.last(), Some(&goal));
// Path should be continuous
for window in path.windows(2) {
let current = window[0];
let next = window[1];
assert!(EdgeDirection::ALL_DIRECTIONS
.iter()
.any(|&dir| current.neighbor(dir) == next));
}
}