mirror of
https://github.com/kristoferssolo/Theory-of-Algorithms-Cheatsheet.git
synced 2025-10-21 20:10:39 +00:00
log in derivation tab.; derivation rules; exponentiation rules
This commit is contained in:
parent
cd0a512d39
commit
7590c1eab0
59
main.typ
59
main.typ
@ -1065,6 +1065,7 @@ Ir spēkā sakarība $"INDSET"(G, k) = "CLIQUE"(G, k)$.
|
|||||||
$ e^x $, $ e^x $, "",
|
$ e^x $, $ e^x $, "",
|
||||||
$ a^x $, $ a^x ln(a) $, $ a > 0 $,
|
$ a^x $, $ a^x ln(a) $, $ a > 0 $,
|
||||||
$ ln(x) $, $ 1 / x $, "",
|
$ ln(x) $, $ 1 / x $, "",
|
||||||
|
$ log_a (x) $, $ 1 / (x ln(a)) $, "",
|
||||||
$ 1 / x $, $ -1 / x^2 $, "",
|
$ 1 / x $, $ -1 / x^2 $, "",
|
||||||
$ 1 / x^n $, $ -n / x^(n+1) $, "",
|
$ 1 / x^n $, $ -n / x^(n+1) $, "",
|
||||||
$ sqrt(x) $, $ 1 / (2 sqrt(x)) $, "",
|
$ sqrt(x) $, $ 1 / (2 sqrt(x)) $, "",
|
||||||
@ -1072,6 +1073,64 @@ Ir spēkā sakarība $"INDSET"(G, k) = "CLIQUE"(G, k)$.
|
|||||||
)
|
)
|
||||||
]
|
]
|
||||||
|
|
||||||
|
== Atvasinājumu īpašības
|
||||||
|
#context [
|
||||||
|
#set text(size: 11pt)
|
||||||
|
#show math.equation: set text(weight: 400, size: 11pt)
|
||||||
|
|
||||||
|
#table(
|
||||||
|
columns: 3,
|
||||||
|
[*Rule Name*], [*Function*], [*Derivative*],
|
||||||
|
|
||||||
|
[Summa], [$ f(x) + g(x) $], [$ f'(x) + g'(x) $],
|
||||||
|
[Starpība], [$ f(x) - g(x) $], [$ f'(x) - g'(x) $],
|
||||||
|
[Reizinājums], [$ f(x) * g(x) $],
|
||||||
|
[
|
||||||
|
$
|
||||||
|
f'(x) * g(x) + \
|
||||||
|
f(x) * g'(x)
|
||||||
|
$
|
||||||
|
],
|
||||||
|
|
||||||
|
/*
|
||||||
|
[Quotient Rule], [$ (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2 $], [$ (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2 $],
|
||||||
|
[Chain Rule], [$ f(g(x)) $], [$ f'(g(x)) * g'(x) $],
|
||||||
|
[Euler’s Number Exponent Rule], [$ e^x $], [$ e^x $],
|
||||||
|
[Constant Exponent Rule], [$ a^x $], [$ a^x * ln(a) $],
|
||||||
|
[Natural Log Rule], [$ ln(x) $], [$ 1 / x $],
|
||||||
|
[Logarithm Rule], [$ log_a(x) $], [$ 1 / (x * ln(a)) $],
|
||||||
|
[Sine Rule], [$ sin(x) $], [$ cos(x) $],
|
||||||
|
[Cosine Rule], [$ cos(x) $], [$ -sin(x) $],
|
||||||
|
[Tangent Rule], [$ tan(x) $], [$ sec^2(x) $],
|
||||||
|
[Cosecant Rule], [$ csc(x) $], [$ -csc(x) * cot(x) $],
|
||||||
|
[Secant Rule], [$ sec(x) $], [$ sec(x) * tan(x) $],
|
||||||
|
[Cotangent Rule], [$ cot(x) $], [$ -csc^2(x) $],
|
||||||
|
*/
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
== Kāpinājumu īpašības
|
||||||
|
#context [
|
||||||
|
#set text(size: 11pt)
|
||||||
|
#show math.equation: set text(weight: 400, size: 11pt)
|
||||||
|
|
||||||
|
#table(
|
||||||
|
columns: 2,
|
||||||
|
[*Rule Name*], [*Formula*],
|
||||||
|
|
||||||
|
[Reizinājums], [$ a^m * a^n = a^(m+n) $],
|
||||||
|
[Dalījums], [$ a^m / a^n = a^(m-n) $],
|
||||||
|
[Pakāpes pakāpe], [$ (a^m)^n = a^(m*n) $],
|
||||||
|
[Reizinājuma pakāpe], [$ (a*b)^m = a^m * b^m $],
|
||||||
|
[Dalījuma pakāpe], [$ (a/b)^m = a^m / b^m $],
|
||||||
|
[0-pakāpe], [$ a^0 = 1 $],
|
||||||
|
[Negatīva pakāpe], [$ a^(-m) = 1 / a^m $],
|
||||||
|
[Saikne ar sakni], [$ a^(m/n) = root(n, a^m) $],
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
== Noderīgas izteiksmes laika analīzē<time_analysis_expressions>
|
== Noderīgas izteiksmes laika analīzē<time_analysis_expressions>
|
||||||
|
|
||||||
$
|
$
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user