diff --git a/main.typ b/main.typ index 56de425..d93dd42 100644 --- a/main.typ +++ b/main.typ @@ -1065,6 +1065,7 @@ Ir spēkā sakarība $"INDSET"(G, k) = "CLIQUE"(G, k)$. $ e^x $, $ e^x $, "", $ a^x $, $ a^x ln(a) $, $ a > 0 $, $ ln(x) $, $ 1 / x $, "", + $ log_a (x) $, $ 1 / (x ln(a)) $, "", $ 1 / x $, $ -1 / x^2 $, "", $ 1 / x^n $, $ -n / x^(n+1) $, "", $ sqrt(x) $, $ 1 / (2 sqrt(x)) $, "", @@ -1072,6 +1073,64 @@ Ir spēkā sakarība $"INDSET"(G, k) = "CLIQUE"(G, k)$. ) ] +== Atvasinājumu īpašības +#context [ + #set text(size: 11pt) + #show math.equation: set text(weight: 400, size: 11pt) + + #table( + columns: 3, + [*Rule Name*], [*Function*], [*Derivative*], + + [Summa], [$ f(x) + g(x) $], [$ f'(x) + g'(x) $], + [Starpība], [$ f(x) - g(x) $], [$ f'(x) - g'(x) $], + [Reizinājums], [$ f(x) * g(x) $], + [ + $ + f'(x) * g(x) + \ + f(x) * g'(x) + $ + ], + + /* + [Quotient Rule], [$ (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2 $], [$ (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2 $], + [Chain Rule], [$ f(g(x)) $], [$ f'(g(x)) * g'(x) $], + [Euler’s Number Exponent Rule], [$ e^x $], [$ e^x $], + [Constant Exponent Rule], [$ a^x $], [$ a^x * ln(a) $], + [Natural Log Rule], [$ ln(x) $], [$ 1 / x $], + [Logarithm Rule], [$ log_a(x) $], [$ 1 / (x * ln(a)) $], + [Sine Rule], [$ sin(x) $], [$ cos(x) $], + [Cosine Rule], [$ cos(x) $], [$ -sin(x) $], + [Tangent Rule], [$ tan(x) $], [$ sec^2(x) $], + [Cosecant Rule], [$ csc(x) $], [$ -csc(x) * cot(x) $], + [Secant Rule], [$ sec(x) $], [$ sec(x) * tan(x) $], + [Cotangent Rule], [$ cot(x) $], [$ -csc^2(x) $], + */ + ) +] + +== Kāpinājumu īpašības +#context [ + #set text(size: 11pt) + #show math.equation: set text(weight: 400, size: 11pt) + + #table( + columns: 2, + [*Rule Name*], [*Formula*], + + [Reizinājums], [$ a^m * a^n = a^(m+n) $], + [Dalījums], [$ a^m / a^n = a^(m-n) $], + [Pakāpes pakāpe], [$ (a^m)^n = a^(m*n) $], + [Reizinājuma pakāpe], [$ (a*b)^m = a^m * b^m $], + [Dalījuma pakāpe], [$ (a/b)^m = a^m / b^m $], + [0-pakāpe], [$ a^0 = 1 $], + [Negatīva pakāpe], [$ a^(-m) = 1 / a^m $], + [Saikne ar sakni], [$ a^(m/n) = root(n, a^m) $], + ) +] + + + == Noderīgas izteiksmes laika analīzē $