mirror of
https://github.com/kristoferssolo/Quantum-Computation-Cheatsheet.git
synced 2025-10-21 19:50:34 +00:00
feat: add key quantum protocols & concepts
This commit is contained in:
parent
8e0c35e3cf
commit
589b0eddb9
62
main.typ
62
main.typ
@ -348,3 +348,65 @@ $
|
|||||||
U_i ket(z_1 ... z_n)=ket(z_1 ... z_n)
|
U_i ket(z_1 ... z_n)=ket(z_1 ... z_n)
|
||||||
$
|
$
|
||||||
ja $z_1 ... z_n != x_1 ...x_n$, $z_1 ... z_n != y_1 .. y_n$.
|
ja $z_1 ... z_n != x_1 ...x_n$, $z_1 ... z_n != y_1 .. y_n$.
|
||||||
|
|
||||||
|
= Key Quantum Protocols & Concepts
|
||||||
|
== No-Cloning Theorem
|
||||||
|
Impossible to create and identical copy of an arbitrary unknown quantum state.
|
||||||
|
|
||||||
|
== Quantum Teleprotation
|
||||||
|
Transmits $ket(psi)=a ket(0) + b ket(1)$ using an entangled pair
|
||||||
|
$ket(Phi^+)_(A B)=1/sqrt(2)(ket(00)+ket(11))$ and $2$ classical bits.
|
||||||
|
|
||||||
|
Initial state (Alice has $ket(psi)_C$ and qubit $A$, Bob has $B$):
|
||||||
|
$
|
||||||
|
ket(psi)_C tensor ket(Phi^+)_(A B)= \ =
|
||||||
|
(a ket(0)_C+b ket(1)_C)1/sqrt(2)(ket(0_A 0_B)+ket(1_A 1_B))= \ =
|
||||||
|
a/sqrt(2)ket(000)+a/sqrt(2)ket(011)+b/sqrt(2)ket(100)+b/sqrt(2)
|
||||||
|
$
|
||||||
|
(qubits $C$, $A$, $B$)
|
||||||
|
|
||||||
|
Alice applied $CNOT$ ($C$ is control, $A$ is target):
|
||||||
|
$
|
||||||
|
a/sqrt(2) ket(000)+a/sqrt(2)ket(011)+b/sqrt(2)ket(110)+b/sqrt(2)ket(101)
|
||||||
|
$
|
||||||
|
|
||||||
|
Alice applies $H$ to qubit $C$:
|
||||||
|
$
|
||||||
|
1/2[
|
||||||
|
a(ket(0)+ket(1))ket(11)+
|
||||||
|
a(ket(0)+ket(1))ket(11)+ \ +
|
||||||
|
b(ket(0)-ket(1))ket(10)+
|
||||||
|
b(ket(0)-ket(1))ket(01)
|
||||||
|
]
|
||||||
|
$
|
||||||
|
|
||||||
|
Regroup by Alice's qubits $C A$:
|
||||||
|
$
|
||||||
|
1/2[
|
||||||
|
ket(00)_(C A) (a ket(0) + b ket(1))+
|
||||||
|
ket(01)_(C A) (a ket(1) + b ket(0))+ \ +
|
||||||
|
ket(10)_(C A) (a ket(0) - b ket(1))+
|
||||||
|
ket(11)_(C A) (a ket(1) - b ket(0))
|
||||||
|
]
|
||||||
|
$
|
||||||
|
|
||||||
|
Alice measures $C A$, sends 2 classical bits to Bob. Bob applies correction to
|
||||||
|
his qubit $B$:
|
||||||
|
- Alice gets $00 ==>$ Bob has $a ket(0)+b ket(1)$ (Needs $I$).
|
||||||
|
- Alice gets $01 ==>$ Bob has $a ket(1)+b ket(0)$ (Needs $X$).
|
||||||
|
- Alice gets $10 ==>$ Bob has $a ket(0)-b ket(1)$ (Needs $Z$).
|
||||||
|
- Alice gets $11 ==>$ Bob has $a ket(1)-b ket(0)$ (Needs $Z X$).
|
||||||
|
|
||||||
|
== Dense Coding (Bļīvā kodēšana)
|
||||||
|
Sends 2 classical bits of information From Alice to Bob by sending only 1 qubit,
|
||||||
|
using pre-shared entangled pair.
|
||||||
|
=== Steps
|
||||||
|
+ Alice and Bob share $ket(Phi^+)_(A B)$
|
||||||
|
+ To send classical bits $x y$:
|
||||||
|
- $00$: Alice does nothing (applies $I$) to her qubit.
|
||||||
|
- $01$: Alice applies $X$ to her qubit.
|
||||||
|
- $10$: Alice applies $Z$ to her qubit.
|
||||||
|
- $11$: Alice applies $X$ then $Z$ (or $i Y$) to her qubit.
|
||||||
|
+ Alice sends her modified qubit to Bob.
|
||||||
|
+ Bob performs a Bell measurement on the two qubits he now possesses to recover
|
||||||
|
$x y$.
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user