From 589b0eddb9cba8e9a92d2c34d646350a5b0c9b24 Mon Sep 17 00:00:00 2001 From: Kristofers Solo Date: Thu, 5 Jun 2025 18:02:10 +0300 Subject: [PATCH] feat: add key quantum protocols & concepts --- main.typ | 62 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 62 insertions(+) diff --git a/main.typ b/main.typ index 18658df..cd1ba5f 100644 --- a/main.typ +++ b/main.typ @@ -348,3 +348,65 @@ $ U_i ket(z_1 ... z_n)=ket(z_1 ... z_n) $ ja $z_1 ... z_n != x_1 ...x_n$, $z_1 ... z_n != y_1 .. y_n$. + += Key Quantum Protocols & Concepts +== No-Cloning Theorem +Impossible to create and identical copy of an arbitrary unknown quantum state. + +== Quantum Teleprotation +Transmits $ket(psi)=a ket(0) + b ket(1)$ using an entangled pair +$ket(Phi^+)_(A B)=1/sqrt(2)(ket(00)+ket(11))$ and $2$ classical bits. + +Initial state (Alice has $ket(psi)_C$ and qubit $A$, Bob has $B$): +$ + ket(psi)_C tensor ket(Phi^+)_(A B)= \ = + (a ket(0)_C+b ket(1)_C)1/sqrt(2)(ket(0_A 0_B)+ket(1_A 1_B))= \ = + a/sqrt(2)ket(000)+a/sqrt(2)ket(011)+b/sqrt(2)ket(100)+b/sqrt(2) +$ +(qubits $C$, $A$, $B$) + +Alice applied $CNOT$ ($C$ is control, $A$ is target): +$ + a/sqrt(2) ket(000)+a/sqrt(2)ket(011)+b/sqrt(2)ket(110)+b/sqrt(2)ket(101) +$ + +Alice applies $H$ to qubit $C$: +$ + 1/2[ + a(ket(0)+ket(1))ket(11)+ + a(ket(0)+ket(1))ket(11)+ \ + + b(ket(0)-ket(1))ket(10)+ + b(ket(0)-ket(1))ket(01) + ] +$ + +Regroup by Alice's qubits $C A$: +$ + 1/2[ + ket(00)_(C A) (a ket(0) + b ket(1))+ + ket(01)_(C A) (a ket(1) + b ket(0))+ \ + + ket(10)_(C A) (a ket(0) - b ket(1))+ + ket(11)_(C A) (a ket(1) - b ket(0)) + ] +$ + +Alice measures $C A$, sends 2 classical bits to Bob. Bob applies correction to +his qubit $B$: +- Alice gets $00 ==>$ Bob has $a ket(0)+b ket(1)$ (Needs $I$). +- Alice gets $01 ==>$ Bob has $a ket(1)+b ket(0)$ (Needs $X$). +- Alice gets $10 ==>$ Bob has $a ket(0)-b ket(1)$ (Needs $Z$). +- Alice gets $11 ==>$ Bob has $a ket(1)-b ket(0)$ (Needs $Z X$). + +== Dense Coding (Bļīvā kodēšana) +Sends 2 classical bits of information From Alice to Bob by sending only 1 qubit, +using pre-shared entangled pair. +=== Steps ++ Alice and Bob share $ket(Phi^+)_(A B)$ ++ To send classical bits $x y$: + - $00$: Alice does nothing (applies $I$) to her qubit. + - $01$: Alice applies $X$ to her qubit. + - $10$: Alice applies $Z$ to her qubit. + - $11$: Alice applies $X$ then $Z$ (or $i Y$) to her qubit. ++ Alice sends her modified qubit to Bob. ++ Bob performs a Bell measurement on the two qubits he now possesses to recover + $x y$.