feat(fundamentals): add fundamentals

This commit is contained in:
Kristofers Solo 2025-06-04 16:00:17 +03:00
parent dfb086e03b
commit 30736e6683
Signed by: kristoferssolo
GPG Key ID: 8687F2D3EEE6F0ED
2 changed files with 32 additions and 11 deletions

View File

@ -47,21 +47,12 @@
// Formatting for regular text // Formatting for regular text
set par(justify: true, leading: 1em, first-line-indent: indent, spacing: 1em) set par(justify: true, leading: 1em, first-line-indent: indent, spacing: 1em)
show heading: set block(spacing: 1.5em) show heading: set block(spacing: 0.7em)
set terms(separator: [ -- ]) set terms(separator: [ -- ])
// Headings // Headings
set heading(numbering: "1.1.") set heading(numbering: "1.1.")
show heading: it => {
if it.level == 1 {
text(12pt, align(center, upper(it)))
} else {
text(12pt, it)
}
""
v(-1cm)
}
// Start page numbering // Start page numbering
set page(numbering: "1", number-align: center) set page(numbering: "1", number-align: center)
@ -190,7 +181,7 @@
) // TODO: make the same style as LaTeX: 1. | (a) | i. | A. ) // TODO: make the same style as LaTeX: 1. | (a) | i. | A.
outline(depth: 3, indent: 1cm, title: text(size: 14pt, "SATURS")) outline(depth: 3, indent: 1cm, title: text(size: 14pt, "Saturs"))
body body
} }

View File

@ -5,3 +5,33 @@
#import "layout.typ": indent-par, project #import "layout.typ": indent-par, project
#show: project.with(title: [Kvantu skaitļošana], authors: ("Kristofer Solo",)) #show: project.with(title: [Kvantu skaitļošana], authors: ("Kristofer Solo",))
= Fundamentals
== Qubit (Kvantu bits)
=== Basis states
$ ket(0)=vec(1, 0), ket(1)=vec(0, 1) $
=== Superposition
A qubit can be in a linear combination of basis states:
$ket(psi)=alpha ket(0)+ beta ket(1)$, where $alpha, beta in CC$ are probability amplitudes.
=== Normalization
$ abs(alpha)^2 + abs(beta)^2 = 1 $
$abs(alpha)^2$ is the probability of measuring $ket(0)$, $abs(beta)^2$ is the
probability of measuring $ket(1)$.
=== Bloch Sphere
Geometric representation of a single qubit state:
$ ket(psi)=cos theta/2 ket(0)+ e^(i phi) sin theta/2 ket(1) $
== Measurement (Mērījumi)
- Projective measurement in the computational basis ${ket(0), ket(1)}$.
- If state is $ket(psi)=alpha ket(0) + beta ket(1)$:
- Outcome $0$: probability $P(0)=abs(braket(0, psi))^2=abs(alpha)^2$.
Post-measurement state: $ket(0)$.
- Outcome $1$: probability $P(1)=abs(braket(1, psi))^2=abs(beta)^2$.
Post-measurement state: $ket(1)$.
- Measurement collapses the superposition.
- Measurement operators: $M_0=ket(0)bra(0)$, $M_1 = ket(1)bra(1)$.
$sum_m M_m^dagger M_m=I$.