mirror of
https://github.com/kristoferssolo/Mathematical-Logic-Cheatsheet.git
synced 2025-10-21 20:00:35 +00:00
finishing touches
This commit is contained in:
parent
002db35f58
commit
d0846feb7f
52
main.typ
52
main.typ
@ -3,6 +3,7 @@
|
||||
#show outline.entry.where(level: 1): it => {
|
||||
upper(it)
|
||||
}
|
||||
#set text(size: 8pt)
|
||||
|
||||
#set heading(numbering: "1.")
|
||||
|
||||
@ -153,7 +154,7 @@ $[L_1, L_2, L_9, M P]: (A->B)->( not B-> not A)$. What does it mean? It's the
|
||||
so-called *Contraposition Law*.
|
||||
|
||||
Note. The following rule form of Contraposition Law is called *Modus Tollens*:
|
||||
$[L_1, L_2, L_9, M P]: A->B, not B tack.r not A, or, ((A->B; not B)/(not A)$ // TODO: factcheck
|
||||
$[L_1, L_2, L_9, M P]: A->B, not B tack.r not A, or, ((A->B; not B)/(not A))$ // TODO: factcheck
|
||||
|
||||
=== Theorem 2.4.4
|
||||
|
||||
@ -209,14 +210,13 @@ L_11, M P]: (A->B)->(( not A->B)->B)$.
|
||||
|
||||
=== Theorem 2.6.3
|
||||
|
||||
$[L_1-L_11, M P]: ( not B-> not A)->(A->B)$. Hence, $[L_1-L_11, M P]: (A->B) <-> ( not B-> not A)$.
|
||||
$[L_1-L_11, M P]: (not B-> not A)->(A->B)$. Hence, $[L_1-L_11, M P]: (A->B) <-> ( not B-> not A)$.
|
||||
|
||||
=== Theorem 2.6.3
|
||||
|
||||
_(another one with the same number of because numbering error (it seems like it))_
|
||||
|
||||
$[L_1-L_9, L_11, M P]: ˫ not (A and B)-> not A or not B$ . Hence, $[L_1-L_9, L_11, M P]: ˫
|
||||
not (A and B)<-> not A or not B$ .
|
||||
$[L_1-L_9, L_11, M P]: tack.r not (A and B)-> not A or not B$. Hence, $[L_1-L_9, L_11, M P]: tack.r not (A and B)<-> not A or not B$ .
|
||||
|
||||
=== Theorem 2.6.4
|
||||
|
||||
@ -242,7 +242,7 @@ L_11, M P]$.
|
||||
|
||||
The axiom $L_9$ cannot be proved in $[L_1-L_8, L_10, M P]$.
|
||||
|
||||
== Replacement Theorem 1
|
||||
=== Replacement Theorem 1
|
||||
|
||||
Let us consider three formulas: $B$, $B'$, $C$, where $B$ is a sub-formula of
|
||||
$C$, and $o(B)$ is a propositional occurrence of $B$ in $C$. Let us denote by
|
||||
@ -259,54 +259,54 @@ formula obtained from $C$ by replacing $o(B)$ by B'. Then, in the minimal logic,
|
||||
|
||||
$[L_1-L_9, L_12-L_15, M P, G e n]: B<->B' tack.r C<->C'$.
|
||||
|
||||
== Theorem 3.1.1
|
||||
=== Theorem 3.1.1
|
||||
|
||||
$[L_1, L_2, L_12, L_13, M P]: forall x B(x) -> exists x B(x)$. What does it
|
||||
mean? It prohibits "empty domains".
|
||||
|
||||
== Theorem 3.1.2
|
||||
=== Theorem 3.1.2
|
||||
|
||||
+ $[L_1, L_2, L_12, L_14, M P, G e n]: forall x(B->C)->(forall x B -> forall x C)$.
|
||||
+ $[L_1, L_2, L_12-L_15, M P, G e n]: forall x(B->C)->(exists x B->exists x C)$.
|
||||
|
||||
== Theorems 3.1.3
|
||||
=== Theorems 3.1.3
|
||||
|
||||
If $F$ is any formula, then:
|
||||
|
||||
+ (U-introduction) $[G e n]: F(x) tack.r forall x F(x)$.
|
||||
+ (U-elimination) $[L_12, M P, G e n]: forall x F(x) tack.r F(x)$.
|
||||
+ (E-introduction) $[L_13, M P, G e n]: F(x) tack.r exists z(x+z+1=y).x F(x)$.
|
||||
+ (E-introduction) $[L_13, M P, G e n]: F(x) tack.r exists x F(x)$.
|
||||
|
||||
== Theorems 3.1.4
|
||||
=== Theorems 3.1.4
|
||||
|
||||
If $F$ is any formula, and $G$ is a formula that does not contain free
|
||||
occurrences of $x$, then:
|
||||
|
||||
+ (U2-introduction) $[L_14, M P, G e n] G -> F (x) tack.r G -> forall x F (x)$.
|
||||
+ (U2-introduction) $[L_14, M P, G e n]: G->F (x) tack.r G->forall x F (x)$.
|
||||
+ (E2-introduction) $[L_15, M P, G e n]: F(x)->G tack.r exists x F (x)->G$.
|
||||
|
||||
== Theorem 3.1.5
|
||||
=== Theorem 3.1.5
|
||||
|
||||
+ $[L_1, L_2, L_5, L_12, L_14, M P, G e n]: forall x forall y B(x,y) <-> forall y forall x B(x,y)$
|
||||
+ $[L_1, L_2, L_5, L_13, L_15, M P, G e n]: exists x exists y B(x,y) <-> exists y exists x B(x,y)$.
|
||||
+ $[L_1, L_2, L_12-L_15, M P, G e n]: exists x forall y B(x,y) <-> forall y exists x B(x,y)$.
|
||||
|
||||
== Theorem 3.1.6
|
||||
=== Theorem 3.1.6
|
||||
If the formula $B$ does not contain free occurrences of $x$, then
|
||||
$[L_1-L_2, L_12-L_15, M P, G e n]: (forall x B)<->B;(exists x B)<->B$, i.e.,
|
||||
quantifiers $forall x; exists x$ can be dropped or introduced as needed.
|
||||
|
||||
== Theorem 3.2.1
|
||||
In the classical logic, $[L_1-L_15, M P, G e n]: not x not B forall <-> x B$.
|
||||
|
||||
== Theorem 3.3.1
|
||||
== Formulas Containing Negations and a Single Quantifier
|
||||
=== Theorem 3.2.1
|
||||
$[L_1-L_15, M P, G e n]: not x not B forall <-> x B$.
|
||||
|
||||
=== Theorem 3.3.1
|
||||
+ $[L_1-L-5, L_12, L_14, M P, G e n]: forall x(B and C)<-> forall x B and forall x C$.
|
||||
+ $[L_1, L_2, L_6-L_8, L_12, L_14, M P, G e n]: tack.r forall x B or forall x C -> forall x(B or C)$.
|
||||
The converse formula $forall x(B or C)-> forall x B or forall x C$ cannot be
|
||||
true.
|
||||
|
||||
== Theorem 3.3.2
|
||||
=== Theorem 3.3.2
|
||||
|
||||
+ $[L_1-L_8, L_12-L_15, M P, G e n]: exists x(B or C)<-> exists x B or exists x C$
|
||||
+ $[L_1-L_5, L_13-L_15, M P, G e n]: exists x(B and C)-> exists x B and exists C$.
|
||||
@ -316,22 +316,20 @@ In the classical logic, $[L_1-L_15, M P, G e n]: not x not B forall <-> x B$.
|
||||
= Three-valued logic
|
||||
|
||||
For example, let us consider a kind of "three-valued logic", where 0 means
|
||||
"`false`", 1 -- "`unknown`" (or `NULL` -- in terms of SQL), and 2 means "true".
|
||||
"`false`", 1 -- "`unknown`" (or `NULL` -- in terms of SQL), and 2 means "`true`".
|
||||
Then it would be natural to define "truth values" of conjunction and disjunction
|
||||
as
|
||||
|
||||
$A and B=min ( A, B)$ ;
|
||||
$A and B=min(A, B)$;
|
||||
|
||||
$A or B=max (A , B)$ .
|
||||
$A or B=max(A, B)$ .
|
||||
|
||||
But how should we define "truth values" of implication and negation?
|
||||
|
||||
#table(
|
||||
columns: 5, $A$, $B$, $A and B$, $A or B$, $A->B$, $0$, $0$, $0$, $0$, $i_1$, $0$, $1$, $0$, $1$, $i_2$, $0$, $2$, $0$, $2$, $i_3$, $1$, $0$, $0$, $1$, $i_4$, $1$, $1$, $1$, $1$, $i_5$, $1$, $2$, $1$, $2$, $i_6$, $2$, $0$, $0$, $2$, $i_7$, $2$, $1$, $1$, $2$, $i_8$, $2$, $2$, $2$, $2$, $i_9$,
|
||||
#grid(
|
||||
columns: 2, gutter: 2em, table(
|
||||
columns: 5, $A$, $B$, $A and B$, $A or B$, $A->B$, $0$, $0$, $0$, $0$, $2$, $0$, $1$, $0$, $1$, $2$, $0$, $2$, $0$, $2$, $2$, $1$, $0$, $0$, $1$, $2$, $1$, $1$, $1$, $1$, $2$, $1$, $2$, $1$, $2$, $2$, $2$, $0$, $0$, $2$, $0$, $2$, $1$, $1$, $2$, $1$, $2$, $2$, $2$, $2$, $2$,
|
||||
), table(columns: 2, $A$, $not A$, $0$, $2$, $1$, $1$, $2$, $0$),
|
||||
)
|
||||
|
||||
#table(columns: 2, $A$, $not A$, $0$, $i_10$, $1$, $i_11$, $2$, $i_12$)
|
||||
|
||||
= Model interpreation
|
||||
|
||||
== Interpretation of a language
|
||||
|
||||
Loading…
Reference in New Issue
Block a user