diff --git a/main.typ b/main.typ index dfdac4a..0161d9c 100644 --- a/main.typ +++ b/main.typ @@ -3,6 +3,7 @@ #show outline.entry.where(level: 1): it => { upper(it) } +#set text(size: 8pt) #set heading(numbering: "1.") @@ -153,7 +154,7 @@ $[L_1, L_2, L_9, M P]: (A->B)->( not B-> not A)$. What does it mean? It's the so-called *Contraposition Law*. Note. The following rule form of Contraposition Law is called *Modus Tollens*: -$[L_1, L_2, L_9, M P]: A->B, not B tack.r not A, or, ((A->B; not B)/(not A)$ // TODO: factcheck +$[L_1, L_2, L_9, M P]: A->B, not B tack.r not A, or, ((A->B; not B)/(not A))$ // TODO: factcheck === Theorem 2.4.4 @@ -209,14 +210,13 @@ L_11, M P]: (A->B)->(( not A->B)->B)$. === Theorem 2.6.3 -$[L_1-L_11, M P]: ( not B-> not A)->(A->B)$. Hence, $[L_1-L_11, M P]: (A->B) <-> ( not B-> not A)$. +$[L_1-L_11, M P]: (not B-> not A)->(A->B)$. Hence, $[L_1-L_11, M P]: (A->B) <-> ( not B-> not A)$. === Theorem 2.6.3 _(another one with the same number of because numbering error (it seems like it))_ -$[L_1-L_9, L_11, M P]: ˫ not (A and B)-> not A or not B$ . Hence, $[L_1-L_9, L_11, M P]: ˫ -not (A and B)<-> not A or not B$ . +$[L_1-L_9, L_11, M P]: tack.r not (A and B)-> not A or not B$. Hence, $[L_1-L_9, L_11, M P]: tack.r not (A and B)<-> not A or not B$ . === Theorem 2.6.4 @@ -242,7 +242,7 @@ L_11, M P]$. The axiom $L_9$ cannot be proved in $[L_1-L_8, L_10, M P]$. -== Replacement Theorem 1 +=== Replacement Theorem 1 Let us consider three formulas: $B$, $B'$, $C$, where $B$ is a sub-formula of $C$, and $o(B)$ is a propositional occurrence of $B$ in $C$. Let us denote by @@ -259,54 +259,54 @@ formula obtained from $C$ by replacing $o(B)$ by B'. Then, in the minimal logic, $[L_1-L_9, L_12-L_15, M P, G e n]: B<->B' tack.r C<->C'$. -== Theorem 3.1.1 +=== Theorem 3.1.1 $[L_1, L_2, L_12, L_13, M P]: forall x B(x) -> exists x B(x)$. What does it mean? It prohibits "empty domains". -== Theorem 3.1.2 +=== Theorem 3.1.2 + $[L_1, L_2, L_12, L_14, M P, G e n]: forall x(B->C)->(forall x B -> forall x C)$. + $[L_1, L_2, L_12-L_15, M P, G e n]: forall x(B->C)->(exists x B->exists x C)$. -== Theorems 3.1.3 +=== Theorems 3.1.3 If $F$ is any formula, then: + (U-introduction) $[G e n]: F(x) tack.r forall x F(x)$. + (U-elimination) $[L_12, M P, G e n]: forall x F(x) tack.r F(x)$. -+ (E-introduction) $[L_13, M P, G e n]: F(x) tack.r exists z(x+z+1=y).x F(x)$. ++ (E-introduction) $[L_13, M P, G e n]: F(x) tack.r exists x F(x)$. -== Theorems 3.1.4 +=== Theorems 3.1.4 If $F$ is any formula, and $G$ is a formula that does not contain free occurrences of $x$, then: -+ (U2-introduction) $[L_14, M P, G e n] G -> F (x) tack.r G -> forall x F (x)$. ++ (U2-introduction) $[L_14, M P, G e n]: G->F (x) tack.r G->forall x F (x)$. + (E2-introduction) $[L_15, M P, G e n]: F(x)->G tack.r exists x F (x)->G$. -== Theorem 3.1.5 +=== Theorem 3.1.5 + $[L_1, L_2, L_5, L_12, L_14, M P, G e n]: forall x forall y B(x,y) <-> forall y forall x B(x,y)$ + $[L_1, L_2, L_5, L_13, L_15, M P, G e n]: exists x exists y B(x,y) <-> exists y exists x B(x,y)$. + $[L_1, L_2, L_12-L_15, M P, G e n]: exists x forall y B(x,y) <-> forall y exists x B(x,y)$. -== Theorem 3.1.6 +=== Theorem 3.1.6 If the formula $B$ does not contain free occurrences of $x$, then $[L_1-L_2, L_12-L_15, M P, G e n]: (forall x B)<->B;(exists x B)<->B$, i.e., quantifiers $forall x; exists x$ can be dropped or introduced as needed. -== Theorem 3.2.1 -In the classical logic, $[L_1-L_15, M P, G e n]: not x not B forall <-> x B$. - -== Theorem 3.3.1 +== Formulas Containing Negations and a Single Quantifier +=== Theorem 3.2.1 +$[L_1-L_15, M P, G e n]: not x not B forall <-> x B$. +=== Theorem 3.3.1 + $[L_1-L-5, L_12, L_14, M P, G e n]: forall x(B and C)<-> forall x B and forall x C$. + $[L_1, L_2, L_6-L_8, L_12, L_14, M P, G e n]: tack.r forall x B or forall x C -> forall x(B or C)$. The converse formula $forall x(B or C)-> forall x B or forall x C$ cannot be true. -== Theorem 3.3.2 +=== Theorem 3.3.2 + $[L_1-L_8, L_12-L_15, M P, G e n]: exists x(B or C)<-> exists x B or exists x C$ + $[L_1-L_5, L_13-L_15, M P, G e n]: exists x(B and C)-> exists x B and exists C$. @@ -316,22 +316,20 @@ In the classical logic, $[L_1-L_15, M P, G e n]: not x not B forall <-> x B$. = Three-valued logic For example, let us consider a kind of "three-valued logic", where 0 means -"`false`", 1 -- "`unknown`" (or `NULL` -- in terms of SQL), and 2 means "true". +"`false`", 1 -- "`unknown`" (or `NULL` -- in terms of SQL), and 2 means "`true`". Then it would be natural to define "truth values" of conjunction and disjunction as -$A and B=min ( A, B)$ ; +$A and B=min(A, B)$; -$A or B=max (A , B)$ . +$A or B=max(A, B)$ . -But how should we define "truth values" of implication and negation? - -#table( - columns: 5, $A$, $B$, $A and B$, $A or B$, $A->B$, $0$, $0$, $0$, $0$, $i_1$, $0$, $1$, $0$, $1$, $i_2$, $0$, $2$, $0$, $2$, $i_3$, $1$, $0$, $0$, $1$, $i_4$, $1$, $1$, $1$, $1$, $i_5$, $1$, $2$, $1$, $2$, $i_6$, $2$, $0$, $0$, $2$, $i_7$, $2$, $1$, $1$, $2$, $i_8$, $2$, $2$, $2$, $2$, $i_9$, +#grid( + columns: 2, gutter: 2em, table( + columns: 5, $A$, $B$, $A and B$, $A or B$, $A->B$, $0$, $0$, $0$, $0$, $2$, $0$, $1$, $0$, $1$, $2$, $0$, $2$, $0$, $2$, $2$, $1$, $0$, $0$, $1$, $2$, $1$, $1$, $1$, $1$, $2$, $1$, $2$, $1$, $2$, $2$, $2$, $0$, $0$, $2$, $0$, $2$, $1$, $1$, $2$, $1$, $2$, $2$, $2$, $2$, $2$, + ), table(columns: 2, $A$, $not A$, $0$, $2$, $1$, $1$, $2$, $0$), ) -#table(columns: 2, $A$, $not A$, $0$, $i_10$, $1$, $i_11$, $2$, $i_12$) - = Model interpreation == Interpretation of a language