finishing touches

This commit is contained in:
Kristofers Solo 2024-05-13 22:46:47 +03:00
parent 002db35f58
commit d0846feb7f

View File

@ -3,6 +3,7 @@
#show outline.entry.where(level: 1): it => { #show outline.entry.where(level: 1): it => {
upper(it) upper(it)
} }
#set text(size: 8pt)
#set heading(numbering: "1.") #set heading(numbering: "1.")
@ -153,7 +154,7 @@ $[L_1, L_2, L_9, M P]: (A->B)->( not B-> not A)$. What does it mean? It's the
so-called *Contraposition Law*. so-called *Contraposition Law*.
Note. The following rule form of Contraposition Law is called *Modus Tollens*: Note. The following rule form of Contraposition Law is called *Modus Tollens*:
$[L_1, L_2, L_9, M P]: A->B, not B tack.r not A, or, ((A->B; not B)/(not A)$ // TODO: factcheck $[L_1, L_2, L_9, M P]: A->B, not B tack.r not A, or, ((A->B; not B)/(not A))$ // TODO: factcheck
=== Theorem 2.4.4 === Theorem 2.4.4
@ -215,8 +216,7 @@ $[L_1-L_11, M P]: ( not B-> not A)->(A->B)$. Hence, $[L_1-L_11, M P]: (A->B) <->
_(another one with the same number of because numbering error (it seems like it))_ _(another one with the same number of because numbering error (it seems like it))_
$[L_1-L_9, L_11, M P]: ˫ not (A and B)-> not A or not B$ . Hence, $[L_1-L_9, L_11, M P]: ˫ $[L_1-L_9, L_11, M P]: tack.r not (A and B)-> not A or not B$. Hence, $[L_1-L_9, L_11, M P]: tack.r not (A and B)<-> not A or not B$ .
not (A and B)<-> not A or not B$ .
=== Theorem 2.6.4 === Theorem 2.6.4
@ -242,7 +242,7 @@ L_11, M P]$.
The axiom $L_9$ cannot be proved in $[L_1-L_8, L_10, M P]$. The axiom $L_9$ cannot be proved in $[L_1-L_8, L_10, M P]$.
== Replacement Theorem 1 === Replacement Theorem 1
Let us consider three formulas: $B$, $B'$, $C$, where $B$ is a sub-formula of Let us consider three formulas: $B$, $B'$, $C$, where $B$ is a sub-formula of
$C$, and $o(B)$ is a propositional occurrence of $B$ in $C$. Let us denote by $C$, and $o(B)$ is a propositional occurrence of $B$ in $C$. Let us denote by
@ -259,54 +259,54 @@ formula obtained from $C$ by replacing $o(B)$ by B'. Then, in the minimal logic,
$[L_1-L_9, L_12-L_15, M P, G e n]: B<->B' tack.r C<->C'$. $[L_1-L_9, L_12-L_15, M P, G e n]: B<->B' tack.r C<->C'$.
== Theorem 3.1.1 === Theorem 3.1.1
$[L_1, L_2, L_12, L_13, M P]: forall x B(x) -> exists x B(x)$. What does it $[L_1, L_2, L_12, L_13, M P]: forall x B(x) -> exists x B(x)$. What does it
mean? It prohibits "empty domains". mean? It prohibits "empty domains".
== Theorem 3.1.2 === Theorem 3.1.2
+ $[L_1, L_2, L_12, L_14, M P, G e n]: forall x(B->C)->(forall x B -> forall x C)$. + $[L_1, L_2, L_12, L_14, M P, G e n]: forall x(B->C)->(forall x B -> forall x C)$.
+ $[L_1, L_2, L_12-L_15, M P, G e n]: forall x(B->C)->(exists x B->exists x C)$. + $[L_1, L_2, L_12-L_15, M P, G e n]: forall x(B->C)->(exists x B->exists x C)$.
== Theorems 3.1.3 === Theorems 3.1.3
If $F$ is any formula, then: If $F$ is any formula, then:
+ (U-introduction) $[G e n]: F(x) tack.r forall x F(x)$. + (U-introduction) $[G e n]: F(x) tack.r forall x F(x)$.
+ (U-elimination) $[L_12, M P, G e n]: forall x F(x) tack.r F(x)$. + (U-elimination) $[L_12, M P, G e n]: forall x F(x) tack.r F(x)$.
+ (E-introduction) $[L_13, M P, G e n]: F(x) tack.r exists z(x+z+1=y).x F(x)$. + (E-introduction) $[L_13, M P, G e n]: F(x) tack.r exists x F(x)$.
== Theorems 3.1.4 === Theorems 3.1.4
If $F$ is any formula, and $G$ is a formula that does not contain free If $F$ is any formula, and $G$ is a formula that does not contain free
occurrences of $x$, then: occurrences of $x$, then:
+ (U2-introduction) $[L_14, M P, G e n] G -> F (x) tack.r G -> forall x F (x)$. + (U2-introduction) $[L_14, M P, G e n]: G->F (x) tack.r G->forall x F (x)$.
+ (E2-introduction) $[L_15, M P, G e n]: F(x)->G tack.r exists x F (x)->G$. + (E2-introduction) $[L_15, M P, G e n]: F(x)->G tack.r exists x F (x)->G$.
== Theorem 3.1.5 === Theorem 3.1.5
+ $[L_1, L_2, L_5, L_12, L_14, M P, G e n]: forall x forall y B(x,y) <-> forall y forall x B(x,y)$ + $[L_1, L_2, L_5, L_12, L_14, M P, G e n]: forall x forall y B(x,y) <-> forall y forall x B(x,y)$
+ $[L_1, L_2, L_5, L_13, L_15, M P, G e n]: exists x exists y B(x,y) <-> exists y exists x B(x,y)$. + $[L_1, L_2, L_5, L_13, L_15, M P, G e n]: exists x exists y B(x,y) <-> exists y exists x B(x,y)$.
+ $[L_1, L_2, L_12-L_15, M P, G e n]: exists x forall y B(x,y) <-> forall y exists x B(x,y)$. + $[L_1, L_2, L_12-L_15, M P, G e n]: exists x forall y B(x,y) <-> forall y exists x B(x,y)$.
== Theorem 3.1.6 === Theorem 3.1.6
If the formula $B$ does not contain free occurrences of $x$, then If the formula $B$ does not contain free occurrences of $x$, then
$[L_1-L_2, L_12-L_15, M P, G e n]: (forall x B)<->B;(exists x B)<->B$, i.e., $[L_1-L_2, L_12-L_15, M P, G e n]: (forall x B)<->B;(exists x B)<->B$, i.e.,
quantifiers $forall x; exists x$ can be dropped or introduced as needed. quantifiers $forall x; exists x$ can be dropped or introduced as needed.
== Theorem 3.2.1 == Formulas Containing Negations and a Single Quantifier
In the classical logic, $[L_1-L_15, M P, G e n]: not x not B forall <-> x B$. === Theorem 3.2.1
$[L_1-L_15, M P, G e n]: not x not B forall <-> x B$.
== Theorem 3.3.1
=== Theorem 3.3.1
+ $[L_1-L-5, L_12, L_14, M P, G e n]: forall x(B and C)<-> forall x B and forall x C$. + $[L_1-L-5, L_12, L_14, M P, G e n]: forall x(B and C)<-> forall x B and forall x C$.
+ $[L_1, L_2, L_6-L_8, L_12, L_14, M P, G e n]: tack.r forall x B or forall x C -> forall x(B or C)$. + $[L_1, L_2, L_6-L_8, L_12, L_14, M P, G e n]: tack.r forall x B or forall x C -> forall x(B or C)$.
The converse formula $forall x(B or C)-> forall x B or forall x C$ cannot be The converse formula $forall x(B or C)-> forall x B or forall x C$ cannot be
true. true.
== Theorem 3.3.2 === Theorem 3.3.2
+ $[L_1-L_8, L_12-L_15, M P, G e n]: exists x(B or C)<-> exists x B or exists x C$ + $[L_1-L_8, L_12-L_15, M P, G e n]: exists x(B or C)<-> exists x B or exists x C$
+ $[L_1-L_5, L_13-L_15, M P, G e n]: exists x(B and C)-> exists x B and exists C$. + $[L_1-L_5, L_13-L_15, M P, G e n]: exists x(B and C)-> exists x B and exists C$.
@ -316,7 +316,7 @@ In the classical logic, $[L_1-L_15, M P, G e n]: not x not B forall <-> x B$.
= Three-valued logic = Three-valued logic
For example, let us consider a kind of "three-valued logic", where 0 means For example, let us consider a kind of "three-valued logic", where 0 means
"`false`", 1 -- "`unknown`" (or `NULL` -- in terms of SQL), and 2 means "true". "`false`", 1 -- "`unknown`" (or `NULL` -- in terms of SQL), and 2 means "`true`".
Then it would be natural to define "truth values" of conjunction and disjunction Then it would be natural to define "truth values" of conjunction and disjunction
as as
@ -324,14 +324,12 @@ $A and B=min ( A, B)$ ;
$A or B=max(A, B)$ . $A or B=max(A, B)$ .
But how should we define "truth values" of implication and negation? #grid(
columns: 2, gutter: 2em, table(
#table( columns: 5, $A$, $B$, $A and B$, $A or B$, $A->B$, $0$, $0$, $0$, $0$, $2$, $0$, $1$, $0$, $1$, $2$, $0$, $2$, $0$, $2$, $2$, $1$, $0$, $0$, $1$, $2$, $1$, $1$, $1$, $1$, $2$, $1$, $2$, $1$, $2$, $2$, $2$, $0$, $0$, $2$, $0$, $2$, $1$, $1$, $2$, $1$, $2$, $2$, $2$, $2$, $2$,
columns: 5, $A$, $B$, $A and B$, $A or B$, $A->B$, $0$, $0$, $0$, $0$, $i_1$, $0$, $1$, $0$, $1$, $i_2$, $0$, $2$, $0$, $2$, $i_3$, $1$, $0$, $0$, $1$, $i_4$, $1$, $1$, $1$, $1$, $i_5$, $1$, $2$, $1$, $2$, $i_6$, $2$, $0$, $0$, $2$, $i_7$, $2$, $1$, $1$, $2$, $i_8$, $2$, $2$, $2$, $2$, $i_9$, ), table(columns: 2, $A$, $not A$, $0$, $2$, $1$, $1$, $2$, $0$),
) )
#table(columns: 2, $A$, $not A$, $0$, $i_10$, $1$, $i_11$, $2$, $i_12$)
= Model interpreation = Model interpreation
== Interpretation of a language == Interpretation of a language