LU-Data-Visualisation/main.py
Kristofers Solo 651f0764d8 refactor
2023-12-22 19:13:48 +02:00

62 lines
1.7 KiB
Python
Executable File

#!/usr/bin/env python
from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
from loguru import logger
logger.add(
Path("logs", "data.log"),
format="{time} | {level} | {message}",
level="DEBUG",
rotation="1 MB",
compression="zip",
)
BASE_PATH = Path(__file__).parent
WIND_GUSTS_PATH = BASE_PATH.joinpath("data", "vejaAtrumsBrazmas.xlsx")
WIND_SPEED_PATH = BASE_PATH.joinpath("data", "vejaAtrumsFaktiskais.xlsx")
AIR_TEMP_PATH = BASE_PATH.joinpath("data", "gaisaTemperatura2022.xlsx")
def read_data(path: Path) -> pd.DataFrame:
dataframe = pd.read_excel(path, parse_dates=["Datums"])
dataframe.set_index("Datums", inplace=True)
return dataframe
# def visualize() -> None:
# df_wind_speed = read_data(WIND_SPEED_PATH)
# df_wind_gusts = read_data(WIND_GUSTS_PATH)
# index = range(len(df_wind_speed))
# bar_width = 0.35
#
# for column, (mean_speed, max_speed) in enumerate(zip(df_wind_speed.columns, df_wind_gusts.columns)):
# plt.bar(index, df_wind_speed[column], width=bar_width, label=f"Vidējais vēja ātrums {mean_speed}", color="blue")
# plt.bar(index, df_wind_gusts[column], width=bar_width, label=f"Vēja ātrums brāzmās {mean_speed}", color="orange")
#
# plt.figure(figsize=(12, 6))
# plt.xlabel("Mērījumu Datums")
# plt.ylabel("Vēja ātrums (m/s)")
# plt.title("Vidējais un maksimālais vēja ātrums 2023. gada augustā")
# plt.legend()
# plt.show()
def task2() -> None:
# create a bar chart
df_air_temp = read_data(AIR_TEMP_PATH)
plt.bar(df_air_temp, height=10, width=0.8)
plt.show()
@logger.catch
def main() -> None:
# visualize()
task2()
if __name__ == "__main__":
main()