#!/usr/bin/env python from pathlib import Path import matplotlib.pyplot as plt import pandas as pd from loguru import logger logger.add( Path("logs", "data.log"), format="{time} | {level} | {message}", level="DEBUG", rotation="1 MB", compression="zip", ) BASE_PATH = Path(__file__).parent WIND_GUSTS_PATH = BASE_PATH.joinpath("data", "vejaAtrumsBrazmas.xlsx") WIND_SPEED_PATH = BASE_PATH.joinpath("data", "vejaAtrumsFaktiskais.xlsx") AIR_TEMP_PATH = BASE_PATH.joinpath("data", "gaisaTemperatura2022.xlsx") def read_data(path: Path) -> pd.DataFrame: dataframe = pd.read_excel(path, parse_dates=["Datums"]) dataframe.set_index("Datums", inplace=True) return dataframe # def visualize() -> None: # df_wind_speed = read_data(WIND_SPEED_PATH) # df_wind_gusts = read_data(WIND_GUSTS_PATH) # index = range(len(df_wind_speed)) # bar_width = 0.35 # # for column, (mean_speed, max_speed) in enumerate(zip(df_wind_speed.columns, df_wind_gusts.columns)): # plt.bar(index, df_wind_speed[column], width=bar_width, label=f"Vidējais vēja ātrums {mean_speed}", color="blue") # plt.bar(index, df_wind_gusts[column], width=bar_width, label=f"Vēja ātrums brāzmās {mean_speed}", color="orange") # # plt.figure(figsize=(12, 6)) # plt.xlabel("Mērījumu Datums") # plt.ylabel("Vēja ātrums (m/s)") # plt.title("Vidējais un maksimālais vēja ātrums 2023. gada augustā") # plt.legend() # plt.show() def task2() -> None: # create a bar chart df_air_temp = read_data(AIR_TEMP_PATH) plt.bar(df_air_temp, height=10, width=0.8) plt.show() @logger.catch def main() -> None: # visualize() task2() if __name__ == "__main__": main()