mod constants; use crate::constants::{IP, PC1_TABLE, PC2_TABLE, PERMUTATION, ROUND_ROTATIONS}; #[derive(Debug)] pub struct Des { pub subkeys: [u64; 16], } impl Des { /// Create a new DES instance from a 64-bit key (8 bytes). #[must_use] pub fn new(key: u64) -> Self { let subkeys = generate_subkeys(key); Self { subkeys } } /// Encrypt a 64-bit block. #[must_use] pub fn encrypt(&self, block: u64) -> u64 { self.des(block, true) } /// Decrypt a 64-bit block. #[must_use] pub fn decrypt(&self, block: u64) -> u64 { self.des(block, false) } /// Expand the right side of the data from 32 bits to 48. #[must_use] fn expand(&self, right: u32) -> u64 { let bytes = right.to_le_bytes(); dbg!(bytes); 0 } /// Feistel function: Expand, XOR with subkey, S-box, permute. #[must_use] fn feistel(&self, right: u32, subkey: u64) -> u32 { todo!() } /// Core DES function: encrypt if forward=true, else decrypt. #[must_use] fn des(&self, mut block: u64, forward: bool) -> u64 { todo!() } /// Helper functions for permutations (bit manipulation) #[must_use] fn permutate(&self, input: u32, table: &[u8], n: usize) -> u32 { todo!() } #[must_use] fn ip(&self, message: u64) -> u64 { apply_permutaion(message, 64, 64, &IP) } #[must_use] pub fn fp(&self, input: u64) -> u64 { todo!() } fn permutate_output(&self, input: u32) -> u32 { self.permutate(input, &PERMUTATION, 32) } } /// Reduces 64 bits to 56-bit key by applying PC-1 permutation. /// Selects 56 specific bits (ignoring 8 parity bits) and permutes them. /// /// Accounts for DES specification's big-endian bit numbering (1-64, MSB first) /// versus Rust u64's little-endian bit numbering (0-63, LSB first). #[must_use] pub fn pc1(key: u64) -> u64 { apply_permutaion(key, 64, 56, &PC1_TABLE) } /// Compression permuation /// Reduces 56-bits to 48-bit key #[must_use] pub fn pc2(key: u64) -> u64 { let key_56 = key & 0x00FF_FFFF_FFFF_FFFF; apply_permutaion(key_56, 56, 48, &PC2_TABLE) } #[must_use] const fn split_key(key: u64) -> (u32, u32) { let is_56_bit = (key >> 56) == 0; if is_56_bit { let masked = key & 0x00FF_FFFF_FFFF_FFFF; let left = (masked >> 28) & 0x0FFF_FFFF; let right = masked & 0x0FFF_FFFF; return (left as u32, right as u32); } let left = (key >> 32) & 0xFFFF_FFFF; let right = key & 0xFFFF_FFFF; (left as u32, right as u32) } /// Circulary shifts 28-bit number left by `shift`. #[must_use] const fn shift(key: u32, shift: u8) -> u32 { const MASK: u32 = 0x0FFF_FFFF; let value = key & MASK; // 28-bits if shift == 0 { return value; } // Circular left shift formula: // (value << shift) gets the main shifted portion // (value >> (28 - shift)) gets the bits that wrapped around let main_shifted = (value << shift) & MASK; let wrapped_bits = (value >> (28 - shift)) & ((1 << shift) - 1); (main_shifted | wrapped_bits) & MASK } /// Concatenates two 28-bit numbers into 56-bit number #[must_use] fn concatenate_keys(left: u32, right: u32) -> u64 { (u64::from(left) << 28) | u64::from(right) } /// Generate 16 subkeys from the 64-bit key. fn generate_subkeys(key: u64) -> [u64; 16] { let reduced_key = pc1(key); // C_0, D_0 let (mut left, mut right) = split_key(reduced_key); ROUND_ROTATIONS .iter() .map(|&shift_amount| { left = shift(left, shift_amount); // C_(n-1) -> C_n right = shift(right, shift_amount); // D_(n-1) -> D_n let combined = concatenate_keys(left, right); pc2(combined) }) .collect::>() .try_into() .expect("Exactly 16 subkeys expected") } /// Generic bit permutation for arbitrary input/output sizes. /// /// # Arguments /// - `input` - The input value (treated as a bitfield of `input_bits` size) /// - `input_bits` - Number of meaningful bits in the input (1-64) /// - `output_bits` - Number of bits in the output (1-64) /// - `position_table` - 1-based positions (1 to `input_bits`) where each output bit comes from #[must_use] fn apply_permutaion(input: u64, input_bits: u32, output_bits: u32, position_table: &[u8]) -> u64 { position_table .iter() .enumerate() .fold(0, |acc, (idx, &pos)| { // Convert 1-based DES position to 0-based input position (MSB first) let pos_0based = u64::from(pos.saturating_sub(1)); let input_bit_pos = u64::from(input_bits) .saturating_sub(1) .saturating_sub(pos_0based); // Extract bit from input let bit_value = (input >> input_bit_pos) & 1; // Extract bit from u64 at the correct position let output_bit_pos = u64::from(output_bits) .saturating_sub(1) .saturating_sub(idx as u64); let shifted_bit = bit_value << output_bit_pos; acc | shifted_bit }) } /// Encrypts data using ECB mode. /// /// # Arguments /// - `data` - Plaintext bytes (must be multiple of 8 for ECB) /// - `key` - 8-byte DES key /// /// # Returns /// /// Ciphertext as Vec, same length as input /// /// # Panics /// /// If data length is not multiple of 8 bytes #[must_use] pub fn encrypt_ecb(data: &[u8], key: &[u8; 8]) -> Vec { todo!() } /// Decrypts ECB-encrypted data. /// /// # Arguments /// - `data` - Plaintext bytes (must be multiple of 8 for ECB) /// - `key` - 8-byte DES key /// /// # Returns /// /// Ciphertext as Vec, same length as input /// /// # Panics /// /// If data length is not multiple of 8 bytes #[must_use] pub fn decrypt_ecb(data: &[u8], key: &[u8; 8]) -> Vec { todo!() } #[cfg(test)] mod tests { use super::*; use crate::constants::S_BOXES; use claims::{assert_ge, assert_le}; use rand::random; use rstest::rstest; use std::time::Instant; const TEST_KEY: u64 = 0x1334_5779_9BBC_DFF1; const RIGHT_KEY: u32 = 0x1234_5678; const TEST_PLAINTEXT: u64 = 0x0123_4567_89AB_CDEF; const TEST_CIPHERTEXT: u64 = 0x85E8_1354_0F0A_B405; const TEST_PC1_RESULT: u64 = 0x00F0_CCAA_F556_678F; // From calculator after PC-1 const TEST_COMBINED_KEY: u64 = 0x00F0_CCAA_F556_678F; // From calculator after re-combination const TEST_PC2_RESULT: u64 = 0x0000_CB3D_8B0E_17F5; // From calculator after PC-2 impl Des { fn apply_sboxes(&self, input: u64) -> u32 { // Implementation for testing S-boxes in isolation // Return 32-bit result after 8 S-boxes todo!() } } /// Helper to create a test Des instance (use your actual key schedule) fn des_instance() -> Des { Des::new(TEST_KEY) } // #[test] fn encrypt_decrypt_roundtrip() { let des = des_instance(); let plaintext = TEST_PLAINTEXT; let ciphertext = des.encrypt(plaintext); let dectrypted = des.decrypt(plaintext); let re_ciphertext = des.encrypt(dectrypted); assert_eq!(ciphertext, TEST_CIPHERTEXT, "Encyption failed"); assert_eq!(re_ciphertext, TEST_CIPHERTEXT, "Re-Encyption failed"); } // #[test] fn weak_keys_rejected() { let weak_keys = [0x0101010101010101, 0xFEFEFEFEFEFEFEFE, 0xE001E001E001E001]; for key in weak_keys { let des = Des::new(key); let plaintext = TEST_PLAINTEXT; let encrypted = des.encrypt(plaintext); let dectrypted = des.decrypt(encrypted); assert_eq!(dectrypted, plaintext, "Weak key {key} failed roundtrip"); } } // #[test] fn multiple_blocks() { let des = des_instance(); let blocks = [ (0x0123456789ABCDEFu64, 0x85E813540F0AB405u64), (0xFEDCBA9876543210u64, 0xC08BF0FF627D3E6Fu64), // Another test vector (0x0000000000000000u64, 0x474D5E3B6F8A07F8u64), // Zero block ]; for (plaintext, expected) in blocks { let encrypted = des.encrypt(plaintext); assert_eq!(encrypted, expected, "Failed on plaintext: {plaintext:016X}"); let dectrypted = des.decrypt(encrypted); assert_eq!(dectrypted, plaintext, "Roundtrip failed on block"); } } #[test] fn initial_permutation() { let expected_ip = 0xCC00_CCFF_F0AA_F0AA; let result = des_instance().ip(TEST_PLAINTEXT); assert_eq!( result, expected_ip, "Initial permulation failed {result:016X} != {expected_ip:016X}" ); } #[test] fn pc1_permutaion_correct() { let result = pc1(TEST_KEY); assert_eq!(result, TEST_PC1_RESULT, "PC1 permutation failed"); assert_ge!( result.leading_zeros(), 0, "PC1 result should have leading 8 bits as 0" ); } #[rstest] #[case(0x00F0_CCAA_F556_678F, 0xCB3D_8B0E_17F5)] // K_0 #[case(0x00E1_9955_FAAC_CF1E, 0x1B02_EFFC_7072)] // K_1 #[case(0x00C3_32AB_F559_9E3D, 0x79AE_D9DB_C9E5)] // K_2 #[case(0x000C_CAAF_F566_78F5, 0x55FC_8A42_CF99)] // K_3 #[case(0x0033_2ABF_C599_E3D5, 0x72AD_D6DB_351D)] // K_4 #[case(0x00CC_AAFF_0667_8F55, 0x7CEC_07EB_53A8)] // K_5 #[case(0x0032_ABFC_399E_3D55, 0x63A5_3E50_7B2F)] // K_6 #[case(0x00CA_AFF0_C678_F556, 0xEC84_B7F6_18BC)] // K_7 #[case(0x002A_BFC3_39E3_D559, 0xF78A_3AC1_3BFB)] // K_8 #[case(0x0055_7F86_63C7_AAB3, 0xE0DB_EBED_E781)] // K_9 #[case(0x0055_FE19_9F1E_AACC, 0xB1F3_47BA_464F)] // K_10 #[case(0x0057_F866_5C7A_AB33, 0x215F_D3DE_D386)] // K_11 #[case(0x005F_E199_51EA_ACCF, 0x7571_F594_67E9)] // K_12 #[case(0x007F_8665_57AA_B33C, 0x97C5_D1FA_BA41)] // K_13 #[case(0x00FE_1995_5EAA_CCF1, 0x5F43_B7F2_E73A)] // K_14 #[case(0x00F8_6655_7AAB_33C7, 0xBF91_8D3D_3F0A)] // K_15 #[case(0x00F0_CCAA_F556_678F, 0xCB3D_8B0E_17F5)] // K_16 fn pc2_permutaion_correct(#[case] before: u64, #[case] after: u64) { let result = pc2(before); assert_eq!(result, after, "PC2 permutation failed"); assert_ge!( result.leading_zeros(), 16, "PC2 result should have leading 16 bits as 0" ); } #[test] fn split_key_56_bits() { let (left, right) = split_key(TEST_PC1_RESULT); assert_eq!(left, 0x0F0C_CAAF, "split_key left half mismatch",); assert_eq!(right, 0x0556_678F, "split_key right half mismatch",); // Verify 28-bit values have 4 leading zeros in u32 assert_ge!( left.leading_zeros(), 4, "Left should be 28-bit value in u32" ); assert_ge!( right.leading_zeros(), 4, "Right should be 28-bit value in u32" ); } #[rstest] #[case(0x0F0C_CAAF, 0x0E19_955F, 1)] // C_1 #[case(0x0E19_955F, 0x0C33_2ABF, 1)] // C_2 #[case(0x0C33_2ABF, 0x00CC_AAFF, 2)] // C_3 #[case(0x00CC_AAFF, 0x0332_ABFC, 2)] // C_4 #[case(0x0332_ABFC, 0x0CCA_AFF0, 2)] // C_5 #[case(0x0CCA_AFF0, 0x032A_BFC3, 2)] // C_6 #[case(0x032A_BFC3, 0x0CAA_FF0C, 2)] // C_7 #[case(0x0CAA_FF0C, 0x02AB_FC33, 2)] // C_8 #[case(0x02AB_FC33, 0x0557_F866, 1)] // C_9 #[case(0x0557_F866, 0x055F_E199, 2)] // C_10 #[case(0x055F_E199, 0x057F_8665, 2)] // C_11 #[case(0x057F_8665, 0x05FE_1995, 2)] // C_12 #[case(0x05FE_1995, 0x07F8_6655, 2)] // C_13 #[case(0x07F8_6655, 0x0FE1_9955, 2)] // C_14 #[case(0x0FE1_9955, 0x0F86_6557, 2)] // C_15 #[case(0x0F86_6557, 0x0F0C_CAAF, 1)] // C_16 #[case(0x0556_678F, 0x0AAC_CF1E, 1)] // D_1 #[case(0x0AAC_CF1E, 0x0559_9E3D, 1)] // D_2 #[case(0x0559_9E3D, 0x0566_78F5, 2)] // D_3 #[case(0x0566_78F5, 0x0599_E3D5, 2)] // D_4 #[case(0x0599_E3D5, 0x0667_8F55, 2)] // D_5 #[case(0x0667_8F55, 0x099E_3D55, 2)] // D_6 #[case(0x099E_3D55, 0x0678_F556, 2)] // D_7 #[case(0x0678_F556, 0x09E3_D559, 2)] // D_8 #[case(0x09E3_D559, 0x03C7_AAB3, 1)] // D_9 #[case(0x03C7_AAB3, 0x0F1E_AACC, 2)] // D_10 #[case(0x0F1E_AACC, 0x0C7A_AB33, 2)] // D_11 #[case(0x0C7A_AB33, 0x01EA_ACCF, 2)] // D_12 #[case(0x01EA_ACCF, 0x07AA_B33C, 2)] // D_13 #[case(0x07AA_B33C, 0x0EAA_CCF1, 2)] // D_14 #[case(0x0EAA_CCF1, 0x0AAB_33C7, 2)] // D_15 #[case(0x0AAB_33C7, 0x0556_678F, 1)] // D_16 fn shift_rotation(#[case] key: u32, #[case] expected_output: u32, #[case] shift_amount: u8) { let result = shift(key, shift_amount); assert_eq!( result, expected_output, "shift(0x{key:08X}, {shift_amount}) should equal 0x{expected_output:08X}" ); // Verify result is still 28 bits assert_eq!( result & 0x0FFF_FFFF, expected_output, "Shift result should preserve 28 bits" ); assert_ge!( result.leading_zeros(), 4, "Shift result should be 28-bit value in u32" ); } #[rstest] #[case(0x0F0C_CAAF, 0x0556_678F, 0x00F0_CCAA_F556_678F)] // CD_0 #[case(0x0E19_955F, 0x0AAC_CF1E, 0x00E1_9955_FAAC_CF1E)] // CD_1 #[case(0x0C33_2ABF, 0x0559_9E3D, 0x00C3_32AB_F559_9E3D)] // CD_2 #[case(0x00CC_AAFF, 0x0566_78F5, 0x000C_CAAF_F566_78F5)] // CD_3 #[case(0x0332_ABFC, 0x0599_E3D5, 0x0033_2ABF_C599_E3D5)] // CD_4 #[case(0x0CCA_AFF0, 0x0667_8F55, 0x00CC_AAFF_0667_8F55)] // CD_5 #[case(0x032A_BFC3, 0x099E_3D55, 0x0032_ABFC_399E_3D55)] // CD_6 #[case(0x0CAA_FF0C, 0x0678_F556, 0x00CA_AFF0_C678_F556)] // CD_7 #[case(0x02AB_FC33, 0x09E3_D559, 0x002A_BFC3_39E3_D559)] // CD_8 #[case(0x0557_F866, 0x03C7_AAB3, 0x0055_7F86_63C7_AAB3)] // CD_9 #[case(0x055F_E199, 0x0F1E_AACC, 0x0055_FE19_9F1E_AACC)] // CD_10 #[case(0x057F_8665, 0x0C7A_AB33, 0x0057_F866_5C7A_AB33)] // CD_11 #[case(0x05FE_1995, 0x01EA_ACCF, 0x005F_E199_51EA_ACCF)] // CD_12 #[case(0x07F8_6655, 0x07AA_B33C, 0x007F_8665_57AA_B33C)] // CD_13 #[case(0x0FE1_9955, 0x0EAA_CCF1, 0x00FE_1995_5EAA_CCF1)] // CD_14 #[case(0x0F86_6557, 0x0AAB_33C7, 0x00F8_6655_7AAB_33C7)] // CD_15 #[case(0x0F0C_CAAF, 0x0556_678F, 0x00F0_CCAA_F556_678F)] // CD_16 fn key_concatenation(#[case] left: u32, #[case] right: u32, #[case] combined: u64) { let result = concatenate_keys(left, right); assert_eq!(result, combined, "{result:016X} != {combined:016X}"); // Verify correct bit layout assert_eq!( (result >> 28) & 0x0FFF_FFFF_FFFF, left as u64, "High 28 bits should be left" ); assert_eq!( result & 0x0FFF_FFFF, right as u64, "Low 28 bits should be right" ); assert_eq!(result >> 56, 0, "Combined should fit in 56 bits"); } // #[test] fn expansion_permutation() { let des = des_instance(); let right_half = RIGHT_KEY; let expanded = des.expand(right_half); // Expansion should produce 48 bits from 32 assert_eq!(expanded >> 48, 0, "Expandsion exceeds 48 bits"); // Test that expansion duplicates bits correctly // Bit 0 of expanded should match bit 31 of input (EXPANSION[0]=32) assert_eq!( (expanded >> 47) & 1, ((right_half as u64) >> 31) & 1, "Expansion bit 0 failed" ); // Bit 1 should match bit 0 (EXPANSION[1]=1) assert_eq!( (expanded >> 46) & 1, (right_half as u64) & 1, "Expansion bit 1 failed" ); // Test wraparound: bit 47 should match bit 0 again (EXPANSION[47]=1) assert_eq!( expanded & 1, (right_half as u64) & 1, "Expansion wraparound failed" ); } // #[test] fn sbox_subsitution() { let sbox_tests = [ // (box_idx, 6-bit input, expected 4-bit output) (0, 0b000000, 14), // S1: 00 0000 -> row 0, col 0 -> 14 (0, 0b011111, 9), // S1: 01 1111 -> row 1, col 15 -> 9 (1, 0b100000, 0), // S2: 10 0000 -> row 2, col 0 -> 0 (2, 0b001010, 2), // S3: 00 1010 -> row 0, col 10 -> 2 ]; for (box_idx, input, expected) in sbox_tests { let row = (input & 1) | ((input >> 4) & 0x2); let col = (input >> 1) & 0xF; let val = S_BOXES[box_idx][row as usize][col as usize]; assert_eq!( val, expected as u8, "S{} failed: input {input:06b} (row {row}, col {col}) expected {expected}, got {val}", box_idx + 1 ); } } // #[test] fn permuation_pbox() { let des = des_instance(); let input = RIGHT_KEY; let result = des.permutate_output(input); // P-box should preserve all bits (32 in, 32 out), just reorder let bit_count = input.count_ones(); let result_bit_count = result.count_ones(); assert_eq!(bit_count, result_bit_count, "P-box changes bit count"); // Test specific bit mapping: PERMUTATION[0]=16 means bit 15 (0-based) of output = bit 15 of input let input_bit_15 = (input >> 15) & 1; let output_bit_0 = (result >> 31) & 1; // MSB first assert_eq!(input_bit_15, output_bit_0, "P-box bit mapping failed"); } // #[test] fn feistel_function_properties() { let des = des_instance(); let right = RIGHT_KEY; let subkey = 0xFEDCBA9876543210 & 0xFFFF_FFFF_FFFF; let feistel_result = des.feistel(right, subkey); // Feistel output should always be 32 bits assert_le!(feistel_result, u32::MAX, "Feistel output exceeds 32 bits"); // Test that zero subkey produces deterministic result let zero_subkey_result = des.feistel(right, 0); let zero_expanded = des.expand(right); let sbox_result = des.apply_sboxes(zero_expanded); let expected = des.permutate_output(sbox_result as u32); assert_eq!(zero_subkey_result, expected, "Feistel with zero key failed"); } // #[test] fn all_zero_paintext() { let des = des_instance(); let plain = 0; let encrypted = des.encrypt(plain); let decrypted = des.decrypt(encrypted); assert_eq!(decrypted, plain, "All-zero plaintext failed"); } // #[test] fn all_one_paintext() { let des = des_instance(); let plain = 1; let encrypted = des.encrypt(plain); let decrypted = des.decrypt(encrypted); assert_eq!(decrypted, plain, "All-one plaintext failed"); } // #[test] fn different_inputs() { let des = des_instance(); let plain1 = 0x0000000000000001; let plain2 = 0x0000000000000002; let enc1 = des.encrypt(plain1); let enc2 = des.encrypt(plain2); assert_ne!( enc1, enc2, "Encryption not deterministic for different inputs" ); } // #[test] #[should_panic(expected = "Invalid key size")] fn invalid_key_size() { let _ = Des::new(0); } // #[test] fn performance() { let des = des_instance(); let plaintext = TEST_PLAINTEXT; let start = Instant::now(); for _ in 0..10000 { let _ = des.encrypt(plaintext); } let duration = start.elapsed(); println!("10k encryption took: {duration:?}"); // Reasonable benchmark: should be under 1ms on modern hardware assert!(duration.as_millis() < 100, "Performance degraded"); } // #[test] fn fuzz_properties() { let des = des_instance(); for _ in 0..100 { let plaintext = random(); let encrypted = des.encrypt(plaintext); let decrypted = des.decrypt(plaintext); assert_eq!(decrypted, encrypted, "Fuzz roundtrip failed"); assert_ne!(encrypted, plaintext, "Encryption is identity function"); let key2 = random(); if key2 != TEST_KEY { let des2 = Des::new(key2); let encrypted2 = des2.encrypt(plaintext); assert_ne!( encrypted, encrypted2, "Different keys produced same encryption" ); } } } }