refactor(tests): move integration tests

This commit is contained in:
Kristofers Solo 2025-10-01 19:06:44 +03:00
parent a452149b33
commit 5d2abc071f
Signed by: kristoferssolo
GPG Key ID: 8687F2D3EEE6F0ED
2 changed files with 224 additions and 241 deletions

View File

@ -1,6 +1,6 @@
mod constants; mod constants;
use crate::constants::{IP, PC1_TABLE, PC2_TABLE, PERMUTATION, ROUND_ROTATIONS}; use crate::constants::{IP, PC1_TABLE, PC2_TABLE, ROUND_ROTATIONS};
#[derive(Debug)] #[derive(Debug)]
pub struct Des { pub struct Des {
@ -27,44 +27,20 @@ impl Des {
self.des(block, false) self.des(block, false)
} }
/// Expand the right side of the data from 32 bits to 48.
#[must_use]
fn expand(&self, right: u32) -> u64 {
let bytes = right.to_le_bytes();
dbg!(bytes);
0
}
/// Feistel function: Expand, XOR with subkey, S-box, permute.
#[must_use]
fn feistel(&self, right: u32, subkey: u64) -> u32 {
todo!()
}
/// Core DES function: encrypt if forward=true, else decrypt. /// Core DES function: encrypt if forward=true, else decrypt.
#[must_use] #[must_use]
fn des(&self, mut block: u64, forward: bool) -> u64 { fn des(&self, block: u64, forward: bool) -> u64 {
todo!() let permutated_block = ip(block);
}
/// Helper functions for permutations (bit manipulation) let (left, right) = if forward {
#[must_use] process_feistel_rounds(permutated_block, &self.subkeys)
fn permutate(&self, input: u32, table: &[u8], n: usize) -> u32 { } else {
todo!() let reversed_subkeys = self.subkeys.iter().rev().copied().collect::<Vec<_>>();
} process_feistel_rounds(permutated_block, &reversed_subkeys)
};
#[must_use] let combined = concatenate_halves(right, left, 64);
fn ip(&self, message: u64) -> u64 { fp(combined)
apply_permutaion(message, 64, 64, &IP)
}
#[must_use]
pub fn fp(&self, input: u64) -> u64 {
todo!()
}
fn permutate_output(&self, input: u32) -> u32 {
self.permutate(input, &PERMUTATION, 32)
} }
} }
@ -75,7 +51,7 @@ impl Des {
/// versus Rust u64's little-endian bit numbering (0-63, LSB first). /// versus Rust u64's little-endian bit numbering (0-63, LSB first).
#[must_use] #[must_use]
pub fn pc1(key: u64) -> u64 { pub fn pc1(key: u64) -> u64 {
apply_permutaion(key, 64, 56, &PC1_TABLE) permutate(key, 64, 56, &PC1_TABLE)
} }
/// Compression permuation /// Compression permuation
@ -83,12 +59,11 @@ pub fn pc1(key: u64) -> u64 {
#[must_use] #[must_use]
pub fn pc2(key: u64) -> u64 { pub fn pc2(key: u64) -> u64 {
let key_56 = key & 0x00FF_FFFF_FFFF_FFFF; let key_56 = key & 0x00FF_FFFF_FFFF_FFFF;
permutate(key_56, 56, 48, &PC2_TABLE)
apply_permutaion(key_56, 56, 48, &PC2_TABLE)
} }
#[must_use] #[must_use]
const fn split_key(key: u64) -> (u32, u32) { const fn split_block(key: u64) -> (u32, u32) {
let is_56_bit = (key >> 56) == 0; let is_56_bit = (key >> 56) == 0;
if is_56_bit { if is_56_bit {
@ -121,23 +96,23 @@ const fn shift(key: u32, shift: u8) -> u32 {
(main_shifted | wrapped_bits) & MASK (main_shifted | wrapped_bits) & MASK
} }
/// Concatenates two 28-bit numbers into 56-bit number /// Concatenates two `input_bits`-bit numbers into 2*`input_bits`-bit number
#[must_use] #[must_use]
fn concatenate_keys(left: u32, right: u32) -> u64 { fn concatenate_halves(left: u32, right: u32, input_bits: u32) -> u64 {
(u64::from(left) << 28) | u64::from(right) (u64::from(left) << input_bits) | u64::from(right)
} }
/// Generate 16 subkeys from the 64-bit key. /// Generate 16 subkeys from the 64-bit key.
fn generate_subkeys(key: u64) -> [u64; 16] { fn generate_subkeys(key: u64) -> [u64; 16] {
let reduced_key = pc1(key); // C_0, D_0 let reduced_key = pc1(key); // C_0, D_0
let (mut left, mut right) = split_key(reduced_key); let (mut left, mut right) = split_block(reduced_key);
ROUND_ROTATIONS ROUND_ROTATIONS
.iter() .iter()
.map(|&shift_amount| { .map(|&shift_amount| {
left = shift(left, shift_amount); // C_(n-1) -> C_n left = shift(left, shift_amount); // C_(n-1) -> C_n
right = shift(right, shift_amount); // D_(n-1) -> D_n right = shift(right, shift_amount); // D_(n-1) -> D_n
let combined = concatenate_keys(left, right); let combined = concatenate_halves(left, right, 28);
pc2(combined) pc2(combined)
}) })
.collect::<Vec<_>>() .collect::<Vec<_>>()
@ -153,7 +128,7 @@ fn generate_subkeys(key: u64) -> [u64; 16] {
/// - `output_bits` - Number of bits in the output (1-64) /// - `output_bits` - Number of bits in the output (1-64)
/// - `position_table` - 1-based positions (1 to `input_bits`) where each output bit comes from /// - `position_table` - 1-based positions (1 to `input_bits`) where each output bit comes from
#[must_use] #[must_use]
fn apply_permutaion(input: u64, input_bits: u32, output_bits: u32, position_table: &[u8]) -> u64 { fn permutate(input: u64, input_bits: u32, output_bits: u32, position_table: &[u8]) -> u64 {
position_table position_table
.iter() .iter()
.enumerate() .enumerate()
@ -177,50 +152,71 @@ fn apply_permutaion(input: u64, input_bits: u32, output_bits: u32, position_tabl
}) })
} }
/// Encrypts data using ECB mode.
///
/// # Arguments
/// - `data` - Plaintext bytes (must be multiple of 8 for ECB)
/// - `key` - 8-byte DES key
///
/// # Returns
///
/// Ciphertext as Vec<u8>, same length as input
///
/// # Panics
///
/// If data length is not multiple of 8 bytes
#[must_use] #[must_use]
pub fn encrypt_ecb(data: &[u8], key: &[u8; 8]) -> Vec<u8> { fn ip(message: u64) -> u64 {
permutate(message, 64, 64, &IP)
}
/// Expand the right side of the data from 32 bits to 48.
#[must_use]
fn expansion_permutation(right: u32) -> u64 {
let bytes = right.to_le_bytes();
dbg!(bytes);
0
}
#[must_use]
fn s_box_permutation(input: u64) -> u32 {
// Implementation for testing S-boxes in isolation
// Return 32-bit result after 8 S-boxes
todo!() todo!()
} }
/// Decrypts ECB-encrypted data.
///
/// # Arguments
/// - `data` - Plaintext bytes (must be multiple of 8 for ECB)
/// - `key` - 8-byte DES key
///
/// # Returns
///
/// Ciphertext as Vec<u8>, same length as input
///
/// # Panics
///
/// If data length is not multiple of 8 bytes
#[must_use] #[must_use]
pub fn decrypt_ecb(data: &[u8], key: &[u8; 8]) -> Vec<u8> { fn p_box_permutation(input: u32) -> u32 {
todo!() todo!()
} }
#[must_use]
pub fn fp(input: u64) -> u64 {
todo!()
}
/// Process 16 Feistel rounds for ECB encryption/decryption.
#[must_use]
fn process_feistel_rounds(initial_block: u64, subkeys: &[u64]) -> (u32, u32) {
let (mut left, mut right) = split_block(initial_block);
for &subkey in subkeys {
(left, right) = feistel(left, right, subkey);
}
(right, left) // left and right should be swapped
}
/// Feistel function: Expand, XOR with subkey, S-box, permute.
/// `R_i` = `L_(i-1)` XOR f(`R_(i-1)`, `K_1`)
#[must_use]
fn feistel(left: u32, right: u32, subkey: u64) -> (u32, u32) {
let function_output = f_function(right, subkey);
let new_right = left ^ function_output;
// L_i = R_(i-1)
let new_left = right;
(new_right, new_left)
}
fn f_function(right: u32, subkey: u64) -> u32 {
let expanded = expansion_permutation(right);
let xored = expanded ^ subkey;
let sboxed = s_box_permutation(xored);
p_box_permutation(sboxed)
}
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*; use super::*;
use crate::constants::S_BOXES; use crate::constants::S_BOXES;
use claims::{assert_ge, assert_le}; use claims::{assert_ge, assert_le};
use rand::random;
use rstest::rstest; use rstest::rstest;
use std::time::Instant;
const TEST_KEY: u64 = 0x1334_5779_9BBC_DFF1; const TEST_KEY: u64 = 0x1334_5779_9BBC_DFF1;
@ -232,65 +228,10 @@ mod tests {
const TEST_COMBINED_KEY: u64 = 0x00F0_CCAA_F556_678F; // From calculator after re-combination const TEST_COMBINED_KEY: u64 = 0x00F0_CCAA_F556_678F; // From calculator after re-combination
const TEST_PC2_RESULT: u64 = 0x0000_CB3D_8B0E_17F5; // From calculator after PC-2 const TEST_PC2_RESULT: u64 = 0x0000_CB3D_8B0E_17F5; // From calculator after PC-2
impl Des {
fn apply_sboxes(&self, input: u64) -> u32 {
// Implementation for testing S-boxes in isolation
// Return 32-bit result after 8 S-boxes
todo!()
}
}
/// Helper to create a test Des instance (use your actual key schedule)
fn des_instance() -> Des {
Des::new(TEST_KEY)
}
// #[test]
fn encrypt_decrypt_roundtrip() {
let des = des_instance();
let plaintext = TEST_PLAINTEXT;
let ciphertext = des.encrypt(plaintext);
let dectrypted = des.decrypt(plaintext);
let re_ciphertext = des.encrypt(dectrypted);
assert_eq!(ciphertext, TEST_CIPHERTEXT, "Encyption failed");
assert_eq!(re_ciphertext, TEST_CIPHERTEXT, "Re-Encyption failed");
}
// #[test]
fn weak_keys_rejected() {
let weak_keys = [0x0101010101010101, 0xFEFEFEFEFEFEFEFE, 0xE001E001E001E001];
for key in weak_keys {
let des = Des::new(key);
let plaintext = TEST_PLAINTEXT;
let encrypted = des.encrypt(plaintext);
let dectrypted = des.decrypt(encrypted);
assert_eq!(dectrypted, plaintext, "Weak key {key} failed roundtrip");
}
}
// #[test]
fn multiple_blocks() {
let des = des_instance();
let blocks = [
(0x0123456789ABCDEFu64, 0x85E813540F0AB405u64),
(0xFEDCBA9876543210u64, 0xC08BF0FF627D3E6Fu64), // Another test vector
(0x0000000000000000u64, 0x474D5E3B6F8A07F8u64), // Zero block
];
for (plaintext, expected) in blocks {
let encrypted = des.encrypt(plaintext);
assert_eq!(encrypted, expected, "Failed on plaintext: {plaintext:016X}");
let dectrypted = des.decrypt(encrypted);
assert_eq!(dectrypted, plaintext, "Roundtrip failed on block");
}
}
#[test] #[test]
fn initial_permutation() { fn initial_permutation() {
let expected_ip = 0xCC00_CCFF_F0AA_F0AA; let expected_ip = 0xCC00_CCFF_F0AA_F0AA;
let result = des_instance().ip(TEST_PLAINTEXT); let result = ip(TEST_PLAINTEXT);
assert_eq!( assert_eq!(
result, expected_ip, result, expected_ip,
"Initial permulation failed {result:016X} != {expected_ip:016X}" "Initial permulation failed {result:016X} != {expected_ip:016X}"
@ -340,7 +281,7 @@ mod tests {
#[test] #[test]
fn split_key_56_bits() { fn split_key_56_bits() {
let (left, right) = split_key(TEST_PC1_RESULT); let (left, right) = split_block(TEST_PC1_RESULT);
assert_eq!(left, 0x0F0C_CAAF, "split_key left half mismatch",); assert_eq!(left, 0x0F0C_CAAF, "split_key left half mismatch",);
assert_eq!(right, 0x0556_678F, "split_key right half mismatch",); assert_eq!(right, 0x0556_678F, "split_key right half mismatch",);
@ -358,6 +299,15 @@ mod tests {
); );
} }
#[test]
fn split_key_64_bits() {
let text = ip(TEST_PLAINTEXT);
let (left, right) = split_block(text);
assert_eq!(left, 0x0CC0_0CCFF, "split_key left half mismatch",);
assert_eq!(right, 0x0F0A_AF0AA, "split_key right half mismatch",);
}
#[rstest] #[rstest]
#[case(0x0F0C_CAAF, 0x0E19_955F, 1)] // C_1 #[case(0x0F0C_CAAF, 0x0E19_955F, 1)] // C_1
#[case(0x0E19_955F, 0x0C33_2ABF, 1)] // C_2 #[case(0x0E19_955F, 0x0C33_2ABF, 1)] // C_2
@ -429,8 +379,8 @@ mod tests {
#[case(0x0FE1_9955, 0x0EAA_CCF1, 0x00FE_1995_5EAA_CCF1)] // CD_14 #[case(0x0FE1_9955, 0x0EAA_CCF1, 0x00FE_1995_5EAA_CCF1)] // CD_14
#[case(0x0F86_6557, 0x0AAB_33C7, 0x00F8_6655_7AAB_33C7)] // CD_15 #[case(0x0F86_6557, 0x0AAB_33C7, 0x00F8_6655_7AAB_33C7)] // CD_15
#[case(0x0F0C_CAAF, 0x0556_678F, 0x00F0_CCAA_F556_678F)] // CD_16 #[case(0x0F0C_CAAF, 0x0556_678F, 0x00F0_CCAA_F556_678F)] // CD_16
fn key_concatenation(#[case] left: u32, #[case] right: u32, #[case] combined: u64) { fn concatenation(#[case] left: u32, #[case] right: u32, #[case] combined: u64) {
let result = concatenate_keys(left, right); let result = concatenate_halves(left, right, 28);
assert_eq!(result, combined, "{result:016X} != {combined:016X}"); assert_eq!(result, combined, "{result:016X} != {combined:016X}");
@ -448,11 +398,10 @@ mod tests {
assert_eq!(result >> 56, 0, "Combined should fit in 56 bits"); assert_eq!(result >> 56, 0, "Combined should fit in 56 bits");
} }
// #[test] #[test]
fn expansion_permutation() { fn permutation_expansion() {
let des = des_instance();
let right_half = RIGHT_KEY; let right_half = RIGHT_KEY;
let expanded = des.expand(right_half); let expanded = expansion_permutation(right_half);
// Expansion should produce 48 bits from 32 // Expansion should produce 48 bits from 32
assert_eq!(expanded >> 48, 0, "Expandsion exceeds 48 bits"); assert_eq!(expanded >> 48, 0, "Expandsion exceeds 48 bits");
@ -478,7 +427,7 @@ mod tests {
); );
} }
// #[test] #[test]
fn sbox_subsitution() { fn sbox_subsitution() {
let sbox_tests = [ let sbox_tests = [
// (box_idx, 6-bit input, expected 4-bit output) // (box_idx, 6-bit input, expected 4-bit output)
@ -502,11 +451,10 @@ mod tests {
} }
} }
// #[test] #[test]
fn permuation_pbox() { fn permuation_pbox() {
let des = des_instance();
let input = RIGHT_KEY; let input = RIGHT_KEY;
let result = des.permutate_output(input); let result = p_box_permutation(input);
// P-box should preserve all bits (32 in, 32 out), just reorder // P-box should preserve all bits (32 in, 32 out), just reorder
let bit_count = input.count_ones(); let bit_count = input.count_ones();
@ -518,103 +466,4 @@ mod tests {
let output_bit_0 = (result >> 31) & 1; // MSB first let output_bit_0 = (result >> 31) & 1; // MSB first
assert_eq!(input_bit_15, output_bit_0, "P-box bit mapping failed"); assert_eq!(input_bit_15, output_bit_0, "P-box bit mapping failed");
} }
// #[test]
fn feistel_function_properties() {
let des = des_instance();
let right = RIGHT_KEY;
let subkey = 0xFEDCBA9876543210 & 0xFFFF_FFFF_FFFF;
let feistel_result = des.feistel(right, subkey);
// Feistel output should always be 32 bits
assert_le!(feistel_result, u32::MAX, "Feistel output exceeds 32 bits");
// Test that zero subkey produces deterministic result
let zero_subkey_result = des.feistel(right, 0);
let zero_expanded = des.expand(right);
let sbox_result = des.apply_sboxes(zero_expanded);
let expected = des.permutate_output(sbox_result as u32);
assert_eq!(zero_subkey_result, expected, "Feistel with zero key failed");
}
// #[test]
fn all_zero_paintext() {
let des = des_instance();
let plain = 0;
let encrypted = des.encrypt(plain);
let decrypted = des.decrypt(encrypted);
assert_eq!(decrypted, plain, "All-zero plaintext failed");
}
// #[test]
fn all_one_paintext() {
let des = des_instance();
let plain = 1;
let encrypted = des.encrypt(plain);
let decrypted = des.decrypt(encrypted);
assert_eq!(decrypted, plain, "All-one plaintext failed");
}
// #[test]
fn different_inputs() {
let des = des_instance();
let plain1 = 0x0000000000000001;
let plain2 = 0x0000000000000002;
let enc1 = des.encrypt(plain1);
let enc2 = des.encrypt(plain2);
assert_ne!(
enc1, enc2,
"Encryption not deterministic for different inputs"
);
}
// #[test]
#[should_panic(expected = "Invalid key size")]
fn invalid_key_size() {
let _ = Des::new(0);
}
// #[test]
fn performance() {
let des = des_instance();
let plaintext = TEST_PLAINTEXT;
let start = Instant::now();
for _ in 0..10000 {
let _ = des.encrypt(plaintext);
}
let duration = start.elapsed();
println!("10k encryption took: {duration:?}");
// Reasonable benchmark: should be under 1ms on modern hardware
assert!(duration.as_millis() < 100, "Performance degraded");
}
// #[test]
fn fuzz_properties() {
let des = des_instance();
for _ in 0..100 {
let plaintext = random();
let encrypted = des.encrypt(plaintext);
let decrypted = des.decrypt(plaintext);
assert_eq!(decrypted, encrypted, "Fuzz roundtrip failed");
assert_ne!(encrypted, plaintext, "Encryption is identity function");
let key2 = random();
if key2 != TEST_KEY {
let des2 = Des::new(key2);
let encrypted2 = des2.encrypt(plaintext);
assert_ne!(
encrypted, encrypted2,
"Different keys produced same encryption"
);
}
}
}
} }

View File

@ -1,5 +1,17 @@
use rand::random;
use std::time::Instant;
use des::Des; use des::Des;
const TEST_KEY: u64 = 0x1334_5779_9BBC_DFF1;
const TEST_PLAINTEXT: u64 = 0x0123_4567_89AB_CDEF;
const TEST_CIPHERTEXT: u64 = 0x85E8_1354_0F0A_B405;
/// Helper to create a test Des instance (use your actual key schedule)
fn des_instance() -> Des {
Des::new(TEST_KEY)
}
// #[test] // #[test]
fn test_ecb_mode_equivalence() { fn test_ecb_mode_equivalence() {
// If you implement ECB mode, test it matches single block // If you implement ECB mode, test it matches single block
@ -31,3 +43,125 @@ fn test_with_real_data() {
let decrypted_bytes = decrypted.to_le_bytes(); let decrypted_bytes = decrypted.to_le_bytes();
assert_eq!(decrypted_bytes[..data_bytes.len()], *data_bytes); assert_eq!(decrypted_bytes[..data_bytes.len()], *data_bytes);
} }
// #[test]
fn all_zero_paintext() {
let des = des_instance();
let plain = 0;
let encrypted = des.encrypt(plain);
let decrypted = des.decrypt(encrypted);
assert_eq!(decrypted, plain, "All-zero plaintext failed");
}
// #[test]
#[should_panic(expected = "Invalid key size")]
fn invalid_key_size() {
let _ = Des::new(0);
}
// #[test]
fn encrypt_decrypt_roundtrip() {
let des = des_instance();
let plaintext = TEST_PLAINTEXT;
let ciphertext = des.encrypt(plaintext);
let dectrypted = des.decrypt(plaintext);
let re_ciphertext = des.encrypt(dectrypted);
assert_eq!(ciphertext, TEST_CIPHERTEXT, "Encyption failed");
assert_eq!(re_ciphertext, TEST_CIPHERTEXT, "Re-Encyption failed");
}
// #[test]
fn weak_keys_rejected() {
let weak_keys = [0x0101010101010101, 0xFEFEFEFEFEFEFEFE, 0xE001E001E001E001];
for key in weak_keys {
let des = Des::new(key);
let plaintext = TEST_PLAINTEXT;
let encrypted = des.encrypt(plaintext);
let dectrypted = des.decrypt(encrypted);
assert_eq!(dectrypted, plaintext, "Weak key {key} failed roundtrip");
}
}
// #[test]
fn multiple_blocks() {
let des = des_instance();
let blocks = [
(0x0123456789ABCDEFu64, 0x85E813540F0AB405u64),
(0xFEDCBA9876543210u64, 0xC08BF0FF627D3E6Fu64), // Another test vector
(0x0000000000000000u64, 0x474D5E3B6F8A07F8u64), // Zero block
];
for (plaintext, expected) in blocks {
let encrypted = des.encrypt(plaintext);
assert_eq!(encrypted, expected, "Failed on plaintext: {plaintext:016X}");
let dectrypted = des.decrypt(encrypted);
assert_eq!(dectrypted, plaintext, "Roundtrip failed on block");
}
}
// #[test]
fn all_one_paintext() {
let des = des_instance();
let plain = 1;
let encrypted = des.encrypt(plain);
let decrypted = des.decrypt(encrypted);
assert_eq!(decrypted, plain, "All-one plaintext failed");
}
// #[test]
fn different_inputs() {
let des = des_instance();
let plain1 = 0x0000000000000001;
let plain2 = 0x0000000000000002;
let enc1 = des.encrypt(plain1);
let enc2 = des.encrypt(plain2);
assert_ne!(
enc1, enc2,
"Encryption not deterministic for different inputs"
);
}
// #[test]
fn performance() {
let des = des_instance();
let plaintext = TEST_PLAINTEXT;
let start = Instant::now();
for _ in 0..10000 {
let _ = des.encrypt(plaintext);
}
let duration = start.elapsed();
println!("10k encryption took: {duration:?}");
// Reasonable benchmark: should be under 1ms on modern hardware
assert!(duration.as_millis() < 100, "Performance degraded");
}
// #[test]
fn fuzz_properties() {
let des = des_instance();
for _ in 0..100 {
let plaintext = random();
let encrypted = des.encrypt(plaintext);
let decrypted = des.decrypt(plaintext);
assert_eq!(decrypted, encrypted, "Fuzz roundtrip failed");
assert_ne!(encrypted, plaintext, "Encryption is identity function");
let key2 = random();
if key2 != TEST_KEY {
let des2 = Des::new(key2);
let encrypted2 = des2.encrypt(plaintext);
assert_ne!(
encrypted, encrypted2,
"Different keys produced same encryption"
);
}
}
}