Created model training program

This commit is contained in:
Kristofers Solo 2022-12-10 16:21:39 +02:00
parent 6327799556
commit 0842048416

View File

@ -0,0 +1,275 @@
"""
This program trains a neural network to detect the color
of a traffic light. Performance on the validation data set is saved
to a directory. Also, the best neural network model is saved as traffic.h5.
"""
import collections # Handles specialized container datatypes
import logging
from pathlib import Path
import cv2 # Computer vision library
import matplotlib.pyplot as plt # Plotting library
import numpy as np # Scientific computing library
import tensorflow as tf # Machine learning library
from detector.object_detection import (
double_shuffle,
load_rgb_images,
reverse_preprocess_inception,
)
from detector.paths import (
GREEN_PATH,
LOGS_PATH,
MODEL_PATH,
NOT_PATH,
RED_PATH,
VALID_PATH,
YELLOW_PATH,
)
from tensorflow import keras # Library for neural networks
from tensorflow.keras.applications.inception_v3 import InceptionV3, preprocess_input
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras.layers import (
BatchNormalization,
Dense,
Dropout,
GlobalAveragePooling2D,
)
from tensorflow.keras.losses import categorical_crossentropy
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adadelta
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.utils import to_categorical
# Set up logging
logger = logging.getLogger(__name__)
handler = logging.FileHandler(str(Path.joinpath(LOGS_PATH, f"{__name__}.log")))
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
# Show the version of TensorFlow and Keras that I am using
logger.info("TensorFlow", tf.__version__)
logger.info("Keras", keras.__version__)
def show_history(history):
"""
Visualize the neural network model training history
A record of training loss values and metrics values at
successive epochs, as well as validation loss values
and validation metrics values
"""
plt.plot(history.history["accuracy"])
plt.plot(history.history["val_accuracy"])
plt.title("model accuracy")
plt.ylabel("accuracy")
plt.xlabel("epoch")
plt.legend(["train_accuracy", "validation_accuracy"], loc="best")
plt.show()
def Transfer(n_classes, freeze_layers=True):
"""Use the InceptionV3 neural network architecture to perform transfer learning."""
logger.info("Loading Inception V3...")
# To understand what the parameters mean, do a Google search 'inceptionv3 keras'.
# The first search result should send you to the Keras website, which has an
# explanation of what each of these parameters mean.
# input_top means we are removing the top part of the Inception model, which is the
# classifier.
# input_shape needs to have 3 channels, and needs to be at least 75x75 for the
# resolution.
# Our neural network will build off of the Inception V3 model (trained on the ImageNet
# data set).
base_model = InceptionV3(weights="imagenet", include_top=False, input_shape=(299, 299, 3))
logger.info("Inception V3 has finished loading.")
# Display the base network architecture
logger.info(f"Layers: {len(base_model.layers)}")
logger.info(f"Shape: {base_model.output_shape[1:]}")
logger.info(f"Shape: {base_model.output_shape}")
logger.info(f"Shape: {base_model.outputs}")
base_model.summary()
# Create the neural network. This network uses the Sequential
# architecture where each layer has one
# input tensor (e.g. vector, matrix, etc.) and one output tensor
top_model = Sequential()
# Our classifier model will build on top of the base model
top_model.add(base_model)
top_model.add(GlobalAveragePooling2D())
top_model.add(Dropout(0.5))
top_model.add(Dense(1024, activation="relu"))
top_model.add(BatchNormalization())
top_model.add(Dropout(0.5))
top_model.add(Dense(512, activation="relu"))
top_model.add(Dropout(0.5))
top_model.add(Dense(128, activation="relu"))
top_model.add(Dense(n_classes, activation="softmax"))
# Freeze layers in the model so that they cannot be trained (i.e. the
# parameters in the neural network will not change)
if freeze_layers:
for layer in base_model.layers:
layer.trainable = False
return top_model
def train_traffic_light_color() -> None:
# Perform image augmentation.
# Image augmentation enables us to alter the available images
# (e.g. rotate, flip, changing the hue, etc.) to generate more images that our
# neural network can use for training...therefore preventing us from having to
# collect more external images.
datagen = ImageDataGenerator(rotation_range=5, width_shift_range=[-10, -5, -2, 0, 2, 5, 10],
zoom_range=[0.7, 1.5], height_shift_range=[-10, -5, -2, 0, 2, 5, 10],
horizontal_flip=True)
shape = (299, 299)
# Load the cropped traffic light images from the appropriate directory
img_0_green = load_rgb_images(Path.iterdir(GREEN_PATH), shape)
img_1_yellow = load_rgb_images(Path.iterdir(YELLOW_PATH), shape)
img_2_red = load_rgb_images(Path.iterdir(RED_PATH), shape)
img_3_not_traffic_light = load_rgb_images(Path.iterdir(NOT_PATH), shape)
# Create a list of the labels that is the same length as the number of images in each
# category
# 0 = green
# 1 = yellow
# 2 = red
# 3 = not a traffic light
labels = [0] * len(img_0_green)
labels.extend([1] * len(img_1_yellow))
labels.extend([2] * len(img_2_red))
labels.extend([3] * len(img_3_not_traffic_light))
# Create NumPy array
labels_np = np.ndarray(shape=(len(labels), 4))
images_np = np.ndarray(shape=(len(labels), shape[0], shape[1], 3))
# Create a list of all the images in the traffic lights data set
img_all = []
img_all.extend(img_0_green)
img_all.extend(img_1_yellow)
img_all.extend(img_2_red)
img_all.extend(img_3_not_traffic_light)
# Make sure we have the same number of images as we have labels
assert len(img_all) == len(labels)
# Shuffle the images
img_all = [preprocess_input(img) for img in img_all]
(img_all, labels) = double_shuffle(img_all, labels)
# Store images and labels in a NumPy array
for idx, _ in enumerate(labels):
images_np[idx] = img_all[idx]
labels_np[idx] = labels[idx]
logger.info(f"Images: {len(img_all)}")
logger.info(f"Labels: {len(labels)}")
# Perform one-hot encoding
for idx in range(len(labels_np)):
# We have four integer labels, representing the different colors of the
# traffic lights.
labels_np[idx] = np.array(to_categorical(labels[idx], 4))
# Split the data set into a training set and a validation set
# The training set is the portion of the data set that is used to
# determine the parameters (e.g. weights) of the neural network.
# The validation set is the portion of the data set used to
# fine tune the model-specific parameters (i.e. hyperparameters) that are
# fixed before you train and test your neural network on the data. The
# validation set helps us select the final model (e.g. learning rate,
# number of hidden layers, number of hidden units, activation functions,
# number of epochs, etc.
# In this case, 80% of the data set becomes training data, and 20% of the
# data set becomes validation data.
idx_split = int(len(labels_np) * 0.8)
x_train = images_np[0:idx_split]
x_valid = images_np[idx_split:]
y_train = labels_np[0:idx_split]
y_valid = labels_np[idx_split:]
# Store a count of the number of traffic lights of each color
cnt = collections.Counter(labels)
logger.info(f"Labels: {cnt}")
n = len(labels)
logger.info(f"0: {cnt[0]}")
logger.info(f"1: {cnt[1]}")
logger.info(f"2: {cnt[2]}")
logger.info(f"3: {cnt[3]}")
# Calculate the weighting of each traffic light class
class_weight = {0: n / cnt[0], 1: n / cnt[1], 2: n / cnt[2], 3: n / cnt[3]}
logger.info(f"Class weight: {class_weight}")
# Save the best model as traffic.h5
checkpoint = ModelCheckpoint(str(MODEL_PATH), monitor="val_loss", mode="min", verbose=1, save_best_only=True)
early_stopping = EarlyStopping(min_delta=0.0005, patience=15, verbose=1)
# Generate model using transfer learning
model = Transfer(n_classes=4, freeze_layers=True)
# Display a summary of the neural network model
model.summary()
# Generate a batch of randomly transformed images
it_train = datagen.flow(x_train, y_train, batch_size=32)
# Configure the model parameters for training
model.compile(loss=categorical_crossentropy, optimizer=Adadelta(
learning_rate=1.0, rho=0.95, epsilon=1e-08), metrics=["accuracy"])
# Train the model on the image batches for a fixed number of epochs
# Store a record of the error on the training data set and metrics values
# in the history object.
history_object = model.fit(it_train, epochs=250, validation_data=(
x_valid, y_valid), shuffle=True, callbacks=[
checkpoint, early_stopping], class_weight=class_weight)
# Display the training history
show_history(history_object)
# Get the loss value and metrics values on the validation data set
score = model.evaluate(x_valid, y_valid, verbose=0)
logger.info(f"Validation loss: {score[0]}")
logger.info(f"Validation accuracy: {score[1]}")
logger.info("Saving the validation data set...")
logger.info(f"Length of the validation data set: {len(x_valid)}")
# Go through the validation data set, and see how the model did on each image
for idx, _ in enumerate(x_valid):
# Make the image a NumPy array
img_as_ar = np.array([x_valid[idx]])
# Generate predictions
prediction = model.predict(img_as_ar)
# Determine what the label is based on the highest probability
label = np.argmax(prediction)
# Create the name of the directory and the file for the validation data set
# After each run, delete this out_valid/ directory so that old files are not
# hanging around in there.
file_name = str(Path.joinpath(VALID_PATH, f"{idx}_{label}_{np.argmax(str(y_valid[idx]))}.jpg"))
image = img_as_ar[0]
# Reverse the image preprocessing process
image = reverse_preprocess_inception(image)
# Save the image file
cv2.imwrite(file_name, cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
logger.info("The validation data set has been saved!")