mirror of
https://github.com/kristoferssolo/Theory-of-Algorithms-Cheatsheet.git
synced 2025-10-21 20:10:39 +00:00
Compare commits
12 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| a91d55151b | |||
| 66bb36d746 | |||
| be4811206c | |||
| 4741efe3dc | |||
| 624b3f0ce5 | |||
| 68398c0f93 | |||
|
|
6fac4ccafa | ||
|
|
b33790252d | ||
|
|
914c91fab4 | ||
|
|
7590c1eab0 | ||
| cd0a512d39 | |||
| e67ff9fdaf |
118
README.md
Normal file
118
README.md
Normal file
@ -0,0 +1,118 @@
|
|||||||
|
# Typst Project Template with Automated Releases
|
||||||
|
|
||||||
|
This repository serves as a template for creating documents with [Typst](https://typst.app/), a modern, markup-based typesetting system. It includes a pre-configured GitHub Actions workflow that automatically compiles your document and creates a GitHub Release whenever you push a new version tag.
|
||||||
|
|
||||||
|
## Features
|
||||||
|
|
||||||
|
- **Automated PDF Compilation**: Automatically compiles `main.typ` into `main.pdf` on every run.
|
||||||
|
- **Dependency Caching**: Uses `typst-community/setup-typst` to cache dependencies listed in `requirements.typ`, speeding up subsequent builds.
|
||||||
|
- **Automatic Releases**: Creates a new GitHub Release with the compiled PDF attached whenever a tag matching the `v*.*.*` pattern is pushed.
|
||||||
|
- **Manual Workflow Trigger**: Allows for manual builds directly from the GitHub Actions tab, perfect for testing changes without creating a release.
|
||||||
|
|
||||||
|
## File Structure
|
||||||
|
|
||||||
|
```bash
|
||||||
|
.
|
||||||
|
├── .github/
|
||||||
|
│ └── workflows/
|
||||||
|
│ └── release.yml # The GitHub Actions workflow definition.
|
||||||
|
├── main.typ # Your main Typst document entry point.
|
||||||
|
├── requirements.typ # List your Typst package dependencies here.
|
||||||
|
├── bibliography.yml # A sample bibliography file (if needed).
|
||||||
|
└── README.md # This file.
|
||||||
|
```
|
||||||
|
|
||||||
|
- **`main.typ`**: This is the heart of your document. All your content should start here.
|
||||||
|
- **`requirements.typ`**: If your project uses external Typst packages, you should specify them here. The workflow will automatically fetch and cache them. For example:
|
||||||
|
|
||||||
|
```typst
|
||||||
|
#import "@preview/fletcher:0.5.8"
|
||||||
|
#import "@preview/physica:0.9.5"
|
||||||
|
```
|
||||||
|
|
||||||
|
- **`.github/workflows/release.yml`**: This file defines the Continuous Integration/Continuous Deployment (CI/CD) pipeline. See the "Workflow Breakdown" section below for a detailed explanation.
|
||||||
|
|
||||||
|
## How to Use This Template
|
||||||
|
|
||||||
|
There are two primary ways to use the automation provided in this template.
|
||||||
|
|
||||||
|
### Method 1: Creating a Release/Tag (Recommended)
|
||||||
|
|
||||||
|
This is the standard way to publish a new version of your document. The workflow will automatically create a GitHub Release and attach your compiled PDF.
|
||||||
|
|
||||||
|
1. **Commit Your Changes**: Make sure all your latest changes to the `.typ` files are committed to your main branch.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git add .
|
||||||
|
git commit -m "Finalize version 1.0.0"
|
||||||
|
```
|
||||||
|
|
||||||
|
2. **Tag the Version**: Create a new Git tag that follows the semantic versioning format (e.g., `v1.0.0`, `v1.2.3`).
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git tag v1.0.0
|
||||||
|
```
|
||||||
|
|
||||||
|
3. **Push the Tag**: Push your commits and the new tag to GitHub.
|
||||||
|
|
||||||
|
```bash git push origin main
|
||||||
|
git push origin v1.0.0
|
||||||
|
```
|
||||||
|
|
||||||
|
Once the tag is pushed, the "Release" workflow will automatically start. It will compile `main.typ` and create a new release on your repository's "Releases" page, named `v1.0.0 — <current_date>`, with `main.pdf` attached as an asset.
|
||||||
|
|
||||||
|
### Method 2: Manual Build for Testing
|
||||||
|
|
||||||
|
If you want to compile the PDF to see the result without creating a public release, you can trigger the workflow manually.
|
||||||
|
|
||||||
|
1. Navigate to the **Actions** tab in your GitHub repository.
|
||||||
|
2. In the left sidebar, click on the **Release** workflow.
|
||||||
|
3. You will see a message: "This workflow has a `workflow_dispatch` event trigger." Click the **Run workflow** dropdown button.
|
||||||
|
4. You will be prompted to enter a `version` string. This is for informational purposes in the run log; you can enter any value (e.g., `test-build`).
|
||||||
|
5. Click the green **Run workflow** button.
|
||||||
|
|
||||||
|
The workflow will run, but the final "Release" step will be skipped. You can download the compiled `main.pdf` from the "Artifacts" section on the summary page for that workflow run.
|
||||||
|
|
||||||
|
## Workflow Breakdown (`release.yml`)
|
||||||
|
|
||||||
|
The automation is powered by the `.github/workflows/release.yml` file. Here is a step-by-step explanation of what it does.
|
||||||
|
|
||||||
|
### Triggers
|
||||||
|
|
||||||
|
The workflow is triggered by two events:
|
||||||
|
|
||||||
|
1. **`push: tags:`**: Runs automatically when a tag matching the pattern `v[0-9]+.[0-9]+.[0-9]+*` is pushed.
|
||||||
|
2. **`workflow_dispatch:`**: Allows the manual execution described above.
|
||||||
|
|
||||||
|
### Permissions
|
||||||
|
|
||||||
|
- `contents: write`: This is essential. It grants the workflow permission to create GitHub Releases and upload files (artifacts) to them.
|
||||||
|
|
||||||
|
### Job: `build`
|
||||||
|
|
||||||
|
The workflow consists of a single job named `build` that runs on an `ubuntu-latest` virtual machine.
|
||||||
|
|
||||||
|
- **`actions/checkout@v4`**: This step checks out your repository's code so the workflow can access your `.typ` files.
|
||||||
|
|
||||||
|
- **`typst-community/setup-typst@v4`**: This community action installs the specified version of Typst (`0.13`). The `cache-dependency-path` key is configured to look at `requirements.typ`, enabling caching of Typst packages to make future runs faster.
|
||||||
|
|
||||||
|
- **`Compile Typst files`**: A simple shell command that runs the Typst compiler, taking `main.typ` as input and producing `main.pdf`.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
typst compile main.typ main.pdf
|
||||||
|
```
|
||||||
|
|
||||||
|
- **`Upload PDF file`**: This step uses `actions/upload-artifact@v4` to save the generated `main.pdf` as a workflow artifact. This is useful for every run, as it allows you to download the PDF even if a release isn't created.
|
||||||
|
|
||||||
|
- **`Get current date`**: Creates a timestamp that is used in the release name for uniqueness.
|
||||||
|
|
||||||
|
- **`softprops/action-gh-release@v1`**: This is the final step that creates the release.
|
||||||
|
- `if: github.ref_type == 'tag'`: This crucial condition ensures this step **only runs if the workflow was triggered by a tag**. It is skipped during manual `workflow_dispatch` runs.
|
||||||
|
- `name: "${{ github.ref_name }} — ${{ env.DATE }}"`: Sets the release title to the tag name (e.g., `v1.0.0`) plus the date.
|
||||||
|
- `files: main.pdf`: Attaches the compiled `main.pdf` to the release.
|
||||||
|
|
||||||
|
## Customization
|
||||||
|
|
||||||
|
- **Typst Version**: To use a different version of Typst, simply change the `typst-version` in the `release.yml` file.
|
||||||
|
- **Main File**: If your main Typst file is not named `main.typ`, you will need to update the `Compile Typst files` and `Release` steps in `release.yml`.
|
||||||
|
- **Release Assets**: You can add more files to the release (e.g., a ZIP of the source code) by modifying the `files:` list in the `Release` step.
|
||||||
144
main.typ
144
main.typ
@ -488,14 +488,6 @@ ka $L in NP$ un ka $SAT <_p L$ (vai jebkura cita zināma NP-pilna problēma).
|
|||||||
- Ja $A(x) = 1$, tad $T(x) = 1$.
|
- Ja $A(x) = 1$, tad $T(x) = 1$.
|
||||||
- Ja $A(x) = 0$, tad $T(x) = 0$ vai $T(x)$ neapstājas.
|
- Ja $A(x) = 0$, tad $T(x) = 0$ vai $T(x)$ neapstājas.
|
||||||
|
|
||||||
Tas, ka problēma ir daļēji atrisināma, nozīmē, ka nav konkrēta un *vispārīga*
|
|
||||||
algoritma, kas vienmēr varētu sniegt pareizu "nē" atbildi gadījumiem ārpus
|
|
||||||
problēmas.
|
|
||||||
|
|
||||||
Var būt iespējams konstruēt Tjūringa mašīnu, kas apstājas un sniedz
|
|
||||||
"nē" atbildi noteiktiem gadījumiem ārpus problēmas, bet tas nav garantēts
|
|
||||||
visiem gadījumiem (_un īsti nav apskatīts šajā kursā_).
|
|
||||||
|
|
||||||
#teo[$A$ -- daļēji atrisināma tad un tikai tad, ja $A$ -- algoritmiski sanumurējama.]
|
#teo[$A$ -- daļēji atrisināma tad un tikai tad, ja $A$ -- algoritmiski sanumurējama.]
|
||||||
|
|
||||||
Cits nosaukums daļējai atrisināmībai ir atpazīstamība (angl.
|
Cits nosaukums daļējai atrisināmībai ir atpazīstamība (angl.
|
||||||
@ -505,8 +497,8 @@ recognizability/recognizable).
|
|||||||
|
|
||||||
Problēma $A$, kurai neviena no $A$, $overline(A)$ nav daļēji atrisināma?
|
Problēma $A$, kurai neviena no $A$, $overline(A)$ nav daļēji atrisināma?
|
||||||
|
|
||||||
- $"EQUIV"(M_1, M_2) = 1$, ja $forall x: M_1(x) = M_2(x)$.
|
- $equiv(M_1, M_2) = 1$, ja $forall x: M_1(x) = M_2(x)$.
|
||||||
- $overline("EQUIV")(M_1, M_2) = 1$, ja $exists x: M_1(x) != M_2(x)$.
|
- $overline(equiv)(M_1, M_2) = 1$, ja $exists x: M_1(x) != M_2(x)$.
|
||||||
|
|
||||||
|
|
||||||
= Nekustīgo punktu teorija
|
= Nekustīgo punktu teorija
|
||||||
@ -560,11 +552,11 @@ QED.
|
|||||||
Notācija, kas tiek izmantota, lai raksturotu *funkciju* sarežģītību
|
Notācija, kas tiek izmantota, lai raksturotu *funkciju* sarežģītību
|
||||||
asimptotiski.
|
asimptotiski.
|
||||||
|
|
||||||
=== Lielais-O (formālā definīcija)
|
=== Lielais-$O$ (formālā definīcija)
|
||||||
|
|
||||||
$f(n) in O(g(n))$, ja:
|
$f(n) in O(g(n))$, ja:
|
||||||
|
|
||||||
$exists C > 0, exists n_0 > 0:$ $(forall n >= n_0: f(n) <= c * g(n))$
|
$exists C > 0, exists n_0 > 0:$ $(forall n >= n_0: f(n) <= c dot g(n))$
|
||||||
|
|
||||||
Tas nozīmē, ka funkcija $f(n)$ asimptotiski nepārsniedz konstanti $c$ reizinātu
|
Tas nozīmē, ka funkcija $f(n)$ asimptotiski nepārsniedz konstanti $c$ reizinātu
|
||||||
$g(n)$.
|
$g(n)$.
|
||||||
@ -651,7 +643,7 @@ Tātad vienādojums ir
|
|||||||
patiess.
|
patiess.
|
||||||
|
|
||||||
=== Piemērs (mazais-$o$)
|
=== Piemērs (mazais-$o$)
|
||||||
$ 2^n n^2 =^? o(n^3) $
|
$ 2^n n^2 =^? o(3^n) $
|
||||||
|
|
||||||
Pēc tās pašas aprakstītās īpašības, kā @small-o-example-3, sanāktu
|
Pēc tās pašas aprakstītās īpašības, kā @small-o-example-3, sanāktu
|
||||||
$ lim_(n->oo) (2^n n^2)/3^n $
|
$ lim_(n->oo) (2^n n^2)/3^n $
|
||||||
@ -757,6 +749,9 @@ $
|
|||||||
U_c "TIME" (N^c) = P
|
U_c "TIME" (N^c) = P
|
||||||
$
|
$
|
||||||
|
|
||||||
|
Labs mentālais modelis, lai pierādītu, ka algoritms pieder $"LOGSPACE"$ -- ja
|
||||||
|
var iztikt ar $O(1)$ mainīgo daudzumu, kur katrs mainīgais ir no $0$ līdz $N$
|
||||||
|
vai noteikts fiksētu vērtību skaits.
|
||||||
|
|
||||||
=== Laika-Telpas sakarības
|
=== Laika-Telpas sakarības
|
||||||
|
|
||||||
@ -764,7 +759,7 @@ $
|
|||||||
Ja $f(n) >= log N$, tad
|
Ja $f(n) >= log N$, tad
|
||||||
$
|
$
|
||||||
"TIME"(f(N)) subset.eq "SPACE"(f(N)) subset.eq \
|
"TIME"(f(N)) subset.eq "SPACE"(f(N)) subset.eq \
|
||||||
subset.eq U_c "TIME" (c^(f(N)))
|
subset.eq union.big_c "TIME" (c^(f(N)))
|
||||||
$
|
$
|
||||||
]
|
]
|
||||||
|
|
||||||
@ -772,7 +767,7 @@ Laiks $O(f(N)) ->$ atmiņa $O(f(N))$.
|
|||||||
|
|
||||||
=== Asimptotiskas augšanas hierarhija
|
=== Asimptotiskas augšanas hierarhija
|
||||||
|
|
||||||
Sekojošas funkcijas pieaugums pie $x -> infinity$:
|
Sekojošas funkcijas pieaugums pie $x -> oo$:
|
||||||
|
|
||||||
$log(x) << x << x dot log(x) << x^k << a^x << x! << x^x$
|
$log(x) << x << x dot log(x) << x^k << a^x << x! << x^x$
|
||||||
|
|
||||||
@ -787,7 +782,36 @@ _$x^epsilon$ ir izņemts laukā, lai nejauktu galvu_
|
|||||||
|
|
||||||
_Source; Mathematics for Computer Science, 2018, Eric Lehman, Google Inc._
|
_Source; Mathematics for Computer Science, 2018, Eric Lehman, Google Inc._
|
||||||
|
|
||||||
= Klase P (TODO)
|
= Klase P
|
||||||
|
|
||||||
|
== Definīcija
|
||||||
|
|
||||||
|
Klase $P$ ir problēmu kopa, ko var atrisināt ar deterministisku Tjūringa mašīnu
|
||||||
|
polinomiālā laikā.
|
||||||
|
|
||||||
|
- $P=union.big_k "TIME"(n^k)$
|
||||||
|
|
||||||
|
Citiem vārdiem: problēma pieder $P$, ja eksistē deterministiska Tjūringa
|
||||||
|
mašīna, kas to atrisina O($n^k$) soļos, kādai konstantei $k$.
|
||||||
|
|
||||||
|
Klase $P$ tiek uzskatīta par praktiski atrisināmo problēmu klasi. Visi
|
||||||
|
saprātīgie deterministiskie skaitļošanas modeļi ir polinomiāli ekvivalenti
|
||||||
|
(vienu var simulēt ar otru polinomiālā laikā).
|
||||||
|
|
||||||
|
== Piemērs ($"PATH"$)
|
||||||
|
|
||||||
|
- Dots grafs $G$ un divas virsotnes $u$, $v$.
|
||||||
|
- Jautājums: vai eksistē ceļš no $u$ uz $v$?
|
||||||
|
- Rupjais-spēks: pārbaudīt visus ceļus -- eksponenciāls laiks.
|
||||||
|
- Efektīvs algoritms: meklēšana plašumā (breadth-first search); laika
|
||||||
|
sarežģītība: $O(abs(V) + abs(E))$.
|
||||||
|
|
||||||
|
== Piemērs ($"RELPRIME"$)
|
||||||
|
|
||||||
|
- Doti skaitļi $x$, $y$ (binārā kodējumā).
|
||||||
|
- Jautājums: vai skaitļi ir savstarpēji pirmskaitļi?
|
||||||
|
- Efektīvs algoritms: Eiklīda algoritms (izmantojot $mod$); laika sarežģītība:
|
||||||
|
$O(log n)$ (jo katrā iterācijā skaitļi būtiski samazinās).
|
||||||
|
|
||||||
= Klase NP
|
= Klase NP
|
||||||
|
|
||||||
@ -796,15 +820,17 @@ _Source; Mathematics for Computer Science, 2018, Eric Lehman, Google Inc._
|
|||||||
#NP (nederminēti-polinomiālas) problēmas
|
#NP (nederminēti-polinomiālas) problēmas
|
||||||
ir problēmas (2 ekvivalentas definīcijas):
|
ir problēmas (2 ekvivalentas definīcijas):
|
||||||
|
|
||||||
+ $L in NP$, ja eksistē pārbaudes algoritms - $O(n^c)$ laika Tjūringa mašīna $M$:
|
+ $L in NP$, ja eksistē pārbaudes algoritms -- $O(n^c)$ laika Tjūringa mašīna $M$:
|
||||||
+ Ja $L(x) = 1$, tad eksistē y: $M(x, y) = 1$.
|
+ Ja $L(x) = 1$, tad eksistē y: $M(x, y) = 1$.
|
||||||
+ Ja $L(x) = 0$, tad visiem y: $M(x, y) = 0$.
|
+ Ja $L(x) = 0$, tad visiem y: $M(x, y) = 0$.
|
||||||
|
+ _Informācija $y$ var saturēt brīvi definētu informāciju._
|
||||||
|
+ _Pārbaudes algoritmā tas ir risinājums, ko tas pārbauda._
|
||||||
+ #NP = problēmas $L$, ko var atrisināt ar nedeterminētu mašīnu $O(n^c)$ laikā.
|
+ #NP = problēmas $L$, ko var atrisināt ar nedeterminētu mašīnu $O(n^c)$ laikā.
|
||||||
|
|
||||||
Ekvivalence ir pierādīta ar abpusēju pārveidojumu no pārbaudītāja uz nedet.
|
Ekvivalence ir pierādīta ar abpusēju pārveidojumu no pārbaudītāja uz nedet.
|
||||||
#TM un atpakaļ.
|
#TM un atpakaļ.
|
||||||
|
|
||||||
== NP-pilnas probēmas un to redukcijas
|
== NP-pilnas problēmas un to redukcijas
|
||||||
|
|
||||||
=== Polinomiāla redukcija $(<=#sub("poly"))$
|
=== Polinomiāla redukcija $(<=#sub("poly"))$
|
||||||
|
|
||||||
@ -883,11 +909,11 @@ Vai dotā lineāru nevienādību sistēma ar bināriem mainīgajiem ir atrisinā
|
|||||||
$x_n$) ievieš jaunus mainīgos $y_i$.
|
$x_n$) ievieš jaunus mainīgos $y_i$.
|
||||||
- Katriem vārtiem formulē atbilstošas izteiksmes.
|
- Katriem vārtiem formulē atbilstošas izteiksmes.
|
||||||
|
|
||||||
Piemērs AND vārtiem. Nosaucam ievades kā x, y un izvadi kā z: $z = x and y$
|
Piemērs `AND` vārtiem. Nosaucam ievades kā x, y un izvadi kā z: $z = x and y$
|
||||||
|
|
||||||
#table(
|
#table(
|
||||||
columns: 4,
|
columns: 4,
|
||||||
[*$x$*], [*$y$*], [*$z$*], [*$z = x and z$?*],
|
[*$x$*], [*$y$*], [*$z$*], [*$z = x and y$?*],
|
||||||
$0$, $0$, $0$, [jā],
|
$0$, $0$, $0$, [jā],
|
||||||
$0$, $0$, $1$, [nē],
|
$0$, $0$, $1$, [nē],
|
||||||
$0$, $1$, $0$, [jā],
|
$0$, $1$, $0$, [jā],
|
||||||
@ -980,7 +1006,8 @@ Vārdiski. Jauns grafs $G$, kurā ir visas virsotnes no $V$, bet
|
|||||||
visas šķautnes, kas ir $G$ nav $G'$ un pretēji -- visas šķautnes
|
visas šķautnes, kas ir $G$ nav $G'$ un pretēji -- visas šķautnes
|
||||||
kā nav $G$ ir $G'$.
|
kā nav $G$ ir $G'$.
|
||||||
|
|
||||||
#figure(diagram(
|
#figure(
|
||||||
|
diagram(
|
||||||
cell-size: 1mm,
|
cell-size: 1mm,
|
||||||
node-stroke: 0pt,
|
node-stroke: 0pt,
|
||||||
spacing: 1em,
|
spacing: 1em,
|
||||||
@ -1011,11 +1038,11 @@ kā nav $G$ ir $G'$.
|
|||||||
edge(<a2>, <b2>, "--", stroke: yellow),
|
edge(<a2>, <b2>, "--", stroke: yellow),
|
||||||
edge(<c2>, <b2>),
|
edge(<c2>, <b2>),
|
||||||
edge(<c2>, <a2>, "--", stroke: yellow),
|
edge(<c2>, <a2>, "--", stroke: yellow),
|
||||||
)),
|
),
|
||||||
caption: "Papildgrafa piemērs",
|
caption: "Papildgrafa piemērs",
|
||||||
)
|
)
|
||||||
|
|
||||||
Ir spēkā sakarība $"INDSET"(G, k) = "CLIQUE"(G, k)$.
|
Ir spēkā sakarība $"INDSET"(G, k) = "CLIQUE"(G', k)$.
|
||||||
|
|
||||||
= Extras
|
= Extras
|
||||||
|
|
||||||
@ -1046,6 +1073,14 @@ Ir spēkā sakarība $"INDSET"(G, k) = "CLIQUE"(G, k)$.
|
|||||||
log_8(3x-4)=log_8(5x+2) \
|
log_8(3x-4)=log_8(5x+2) \
|
||||||
"so," 3x-4=5x+2
|
"so," 3x-4=5x+2
|
||||||
$,
|
$,
|
||||||
|
|
||||||
|
[Pow. to log],
|
||||||
|
$
|
||||||
|
a^(log_a (x)) = x
|
||||||
|
$,
|
||||||
|
$
|
||||||
|
2^(log_2 (x)) = x
|
||||||
|
$,
|
||||||
))
|
))
|
||||||
]
|
]
|
||||||
|
|
||||||
@ -1065,6 +1100,7 @@ Ir spēkā sakarība $"INDSET"(G, k) = "CLIQUE"(G, k)$.
|
|||||||
$ e^x $, $ e^x $, "",
|
$ e^x $, $ e^x $, "",
|
||||||
$ a^x $, $ a^x ln(a) $, $ a > 0 $,
|
$ a^x $, $ a^x ln(a) $, $ a > 0 $,
|
||||||
$ ln(x) $, $ 1 / x $, "",
|
$ ln(x) $, $ 1 / x $, "",
|
||||||
|
$ log_a (x) $, $ 1 / (x ln(a)) $, "",
|
||||||
$ 1 / x $, $ -1 / x^2 $, "",
|
$ 1 / x $, $ -1 / x^2 $, "",
|
||||||
$ 1 / x^n $, $ -n / x^(n+1) $, "",
|
$ 1 / x^n $, $ -n / x^(n+1) $, "",
|
||||||
$ sqrt(x) $, $ 1 / (2 sqrt(x)) $, "",
|
$ sqrt(x) $, $ 1 / (2 sqrt(x)) $, "",
|
||||||
@ -1072,6 +1108,64 @@ Ir spēkā sakarība $"INDSET"(G, k) = "CLIQUE"(G, k)$.
|
|||||||
)
|
)
|
||||||
]
|
]
|
||||||
|
|
||||||
|
== Atvasinājumu īpašības
|
||||||
|
#context [
|
||||||
|
#set text(size: 11pt)
|
||||||
|
#show math.equation: set text(weight: 400, size: 11pt)
|
||||||
|
|
||||||
|
#table(
|
||||||
|
columns: 3,
|
||||||
|
[*Rule Name*], [*Function*], [*Derivative*],
|
||||||
|
|
||||||
|
[Summa], [$ f(x) + g(x) $], [$ f'(x) + g'(x) $],
|
||||||
|
[Starpība], [$ f(x) - g(x) $], [$ f'(x) - g'(x) $],
|
||||||
|
[Reizinājums], [$ f(x) dot g(x) $],
|
||||||
|
[
|
||||||
|
$
|
||||||
|
f'(x) dot g(x) + \
|
||||||
|
f(x) dot g'(x)
|
||||||
|
$
|
||||||
|
],
|
||||||
|
|
||||||
|
/*
|
||||||
|
[Quotient Rule], [$ (f'(x) dot g(x) - f(x) * g'(x)) / (g(x))^2 $], [$ (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2 $],
|
||||||
|
[Chain Rule], [$ f(g(x)) $], [$ f'(g(x)) dot g'(x) $],
|
||||||
|
[Euler’s Number Exponent Rule], [$ e^x $], [$ e^x $],
|
||||||
|
[Constant Exponent Rule], [$ a^x $], [$ a^x dot ln(a) $],
|
||||||
|
[Natural Log Rule], [$ ln(x) $], [$ 1 / x $],
|
||||||
|
[Logarithm Rule], [$ log_a(x) $], [$ 1 / (x dot ln(a)) $],
|
||||||
|
[Sine Rule], [$ sin(x) $], [$ cos(x) $],
|
||||||
|
[Cosine Rule], [$ cos(x) $], [$ -sin(x) $],
|
||||||
|
[Tangent Rule], [$ tan(x) $], [$ sec^2(x) $],
|
||||||
|
[Cosecant Rule], [$ csc(x) $], [$ -csc(x) dot cot(x) $],
|
||||||
|
[Secant Rule], [$ sec(x) $], [$ sec(x) dot tan(x) $],
|
||||||
|
[Cotangent Rule], [$ cot(x) $], [$ -csc^2(x) $],
|
||||||
|
*/
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
== Kāpinājumu īpašības
|
||||||
|
#context [
|
||||||
|
#set text(size: 11pt)
|
||||||
|
#show math.equation: set text(weight: 400, size: 11pt)
|
||||||
|
|
||||||
|
#table(
|
||||||
|
columns: 2,
|
||||||
|
[*Rule Name*], [*Formula*],
|
||||||
|
|
||||||
|
[Reizinājums], [$ a^m dot a^n = a^(m+n) $],
|
||||||
|
[Dalījums], [$ a^m / a^n = a^(m-n) $],
|
||||||
|
[Pakāpes pakāpe], [$ (a^m)^n = a^(m dot n) $],
|
||||||
|
[Reizinājuma pakāpe], [$ (a dot b)^m = a^m dot b^m $],
|
||||||
|
[Dalījuma pakāpe], [$ (a/b)^m = a^m / b^m $],
|
||||||
|
[0-pakāpe], [$ a^0 = 1 $],
|
||||||
|
[Negatīva pakāpe], [$ a^(-m) = 1 / a^m $],
|
||||||
|
[Saikne ar sakni], [$ a^(m/n) = root(n, a^m) $],
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
== Noderīgas izteiksmes laika analīzē<time_analysis_expressions>
|
== Noderīgas izteiksmes laika analīzē<time_analysis_expressions>
|
||||||
|
|
||||||
$
|
$
|
||||||
@ -1079,8 +1173,8 @@ $
|
|||||||
sum_(i=1)^(n) i^2 = (n(n+1)(2n+1))/(6)\
|
sum_(i=1)^(n) i^2 = (n(n+1)(2n+1))/(6)\
|
||||||
sum_(i=1)^(n) i^3 = ( (n(n+1))/(2))^2 \
|
sum_(i=1)^(n) i^3 = ( (n(n+1))/(2))^2 \
|
||||||
// Geometric series (ratio r \neq 1)
|
// Geometric series (ratio r \neq 1)
|
||||||
r > 1: sum_(i=0)^(n) a*r^i = a * (r^(n+1)-1)/(r-1) quad \
|
r > 1: sum_(i=0)^(n) a dot r^i = a dot (r^(n+1)-1)/(r-1) quad \
|
||||||
r < 1: sum_(i=0)^(infinity) a*r^i = (a)/(1-r) \
|
r < 1: sum_(i=0)^(oo) a dot r^i = (a)/(1-r) \
|
||||||
// Logarithmic sum
|
// Logarithmic sum
|
||||||
sum_(i=1)^(n) log i = log(n!) approx n log n - n + O(log n) \
|
sum_(i=1)^(n) log i = log(n!) approx n log n - n + O(log n) \
|
||||||
// Exponential sum (appears in brute-force algorithms)
|
// Exponential sum (appears in brute-force algorithms)
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user