mirror of
https://github.com/kristoferssolo/Theory-of-Algorithms-Cheatsheet.git
synced 2025-10-21 20:10:39 +00:00
feat: add partial undecidability
This commit is contained in:
parent
eb904d5483
commit
c22c75649b
29
main.typ
29
main.typ
@ -277,6 +277,35 @@ This reduction demonstrates that $halt 2$ is computationally no harder than
|
|||||||
$halt$, implying that $halt 2$ is at least as undecidable as $halt$.
|
$halt$, implying that $halt 2$ is at least as undecidable as $halt$.
|
||||||
|
|
||||||
= Daļēja atrisināmība
|
= Daļēja atrisināmība
|
||||||
|
== Info
|
||||||
|
A problem is considered partially undecidable if it is not decidable, meaning
|
||||||
|
there is no algorithm that can correctly determines a "yes" or "no" answer for
|
||||||
|
every input instance of the problem.
|
||||||
|
However, it may still be semidecidable, also known as recursively enumerable.
|
||||||
|
|
||||||
|
In the context of Turing machines and computability theory, a problem is
|
||||||
|
partially undecidable if there exists a Turing machine that halts and produces a
|
||||||
|
"yes" answer for every instance that belongs to the problem, but may either loop
|
||||||
|
indefinitely or reject instances that do not belong to the problem.
|
||||||
|
In other words, there is an algorithm that can recognize the instances that
|
||||||
|
satisfy the problem's criteria but may not halt on instances that do not.
|
||||||
|
|
||||||
|
A problem being partially undecidable means that there is no total algorithm
|
||||||
|
that can always produce a correct "no" answer for instances outside the problem.
|
||||||
|
It may be possible to construct a Turing machine that halts and produces a "no"
|
||||||
|
answer for certain instances outside the problem, but this is not guaranteed for
|
||||||
|
all instances.
|
||||||
|
|
||||||
|
#teo(
|
||||||
|
title: "Raisa teorēma",
|
||||||
|
)[Ja $F$ nav triviāla (ir $M:F(M)=0$ un $M':F(M')=1$), tad $F$ -- neatrisināma.]
|
||||||
|
|
||||||
|
$A$ -- daļēji atrisināma, ja ir Tjūringa mašīna $T$:
|
||||||
|
- Ja $A(x)=1$, tad $T(x)=1$.
|
||||||
|
- Ja $A(x)=0$, tad $T(x)=0$ vai $T(x)$ neapstājas.
|
||||||
|
|
||||||
|
#teo[$A$ -- daļēji atrisināma tad un tikai tad, ja $A$ -- algoritmiski sanumurējama.]
|
||||||
|
|
||||||
= Algoritmiskā sanumurējamība
|
= Algoritmiskā sanumurējamība
|
||||||
= TM darbības laiks
|
= TM darbības laiks
|
||||||
= NP (neatrisināmas problēmas)
|
= NP (neatrisināmas problēmas)
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user