From 4741efe3dc975bb513ec333fe5e56c090f886816 Mon Sep 17 00:00:00 2001 From: Kristofers Solo Date: Sun, 15 Jun 2025 20:32:39 +0300 Subject: [PATCH] fix: graph caption --- main.typ | 83 ++++++++++++++++++++++++++++---------------------------- 1 file changed, 42 insertions(+), 41 deletions(-) diff --git a/main.typ b/main.typ index 7384d83..d2fb61b 100644 --- a/main.typ +++ b/main.typ @@ -802,9 +802,9 @@ saprātīgie deterministiskie skaitļošanas modeļi ir polinomiāli ekvivalenti - Dots grafs $G$ un divas virsotnes $u$, $v$. - Jautājums: vai eksistē ceļš no $u$ uz $v$? -- Rupjais-spēks: pārbaudīt visus ceļus — eksponenciāls laiks. +- Rupjais-spēks: pārbaudīt visus ceļus -- eksponenciāls laiks. - Efektīvs algoritms: meklēšana plašumā (breadth-first search); laika - sarežģītība: $O(|V| + |E|)$. + sarežģītība: $O(abs(V) + abs(E))$. == Piemērs ($"RELPRIME"$) @@ -820,7 +820,7 @@ saprātīgie deterministiskie skaitļošanas modeļi ir polinomiāli ekvivalenti #NP (nederminēti-polinomiālas) problēmas ir problēmas (2 ekvivalentas definīcijas): -+ $L in NP$, ja eksistē pārbaudes algoritms - $O(n^c)$ laika Tjūringa mašīna $M$: ++ $L in NP$, ja eksistē pārbaudes algoritms -- $O(n^c)$ laika Tjūringa mašīna $M$: + Ja $L(x) = 1$, tad eksistē y: $M(x, y) = 1$. + Ja $L(x) = 0$, tad visiem y: $M(x, y) = 0$. + _Informācija $y$ var saturēt brīvi definētu informāciju._ @@ -1006,39 +1006,40 @@ Vārdiski. Jauns grafs $G$, kurā ir visas virsotnes no $V$, bet visas šķautnes, kas ir $G$ nav $G'$ un pretēji -- visas šķautnes kā nav $G$ ir $G'$. -#figure(diagram( - cell-size: 1mm, - node-stroke: 0pt, - spacing: 1em, - node-shape: circle, - // phantom location nodes - dot-node((0, 0), ), - dot-node((-2, 1), ), - dot-node((0, 2), ), +#figure( + diagram( + cell-size: 1mm, + node-stroke: 0pt, + spacing: 1em, + node-shape: circle, + // phantom location nodes + dot-node((0, 0), ), + dot-node((-2, 1), ), + dot-node((0, 2), ), - dot-node((0, 4), ), - dot-node((-2, 5), ), - dot-node((0, 6), ), + dot-node((0, 4), ), + dot-node((-2, 5), ), + dot-node((0, 6), ), - // label nodes - node((rel: (0.7em, 0.7em), to: ), $B$), - node((rel: (-0.7em, 0em), to: ), $A$), - node((rel: (0.7em, 0.7em), to: ), $C$), - node((1, 1), text(green, $G$)), + // label nodes + node((rel: (0.7em, 0.7em), to: ), $B$), + node((rel: (-0.7em, 0em), to: ), $A$), + node((rel: (0.7em, 0.7em), to: ), $C$), + node((1, 1), text(green, $G$)), - node((rel: (0.7em, 0.7em), to: ), $B$), - node((rel: (-0.7em, 0em), to: ), $A$), - node((rel: (0.7em, 0.7em), to: ), $C$), - node((1.6, 5), text(green, $G "papildinājums"$)), + node((rel: (0.7em, 0.7em), to: ), $B$), + node((rel: (-0.7em, 0em), to: ), $A$), + node((rel: (0.7em, 0.7em), to: ), $C$), + node((1.6, 5), text(green, $G "papildinājums"$)), - edge(, ), - edge(, , "--", stroke: yellow), - edge(, ), - edge(, , "--", stroke: yellow), - edge(, ), - edge(, , "--", stroke: yellow), -)), -caption: "Papildgrafa piemērs", + edge(, ), + edge(, , "--", stroke: yellow), + edge(, ), + edge(, , "--", stroke: yellow), + edge(, ), + edge(, , "--", stroke: yellow), + ), + caption: "Papildgrafa piemērs", ) Ir spēkā sakarība $"INDSET"(G, k) = "CLIQUE"(G', k)$. @@ -1118,26 +1119,26 @@ Ir spēkā sakarība $"INDSET"(G, k) = "CLIQUE"(G', k)$. [Summa], [$ f(x) + g(x) $], [$ f'(x) + g'(x) $], [Starpība], [$ f(x) - g(x) $], [$ f'(x) - g'(x) $], - [Reizinājums], [$ f(x) * g(x) $], + [Reizinājums], [$ f(x) dot g(x) $], [ $ - f'(x) * g(x) + \ - f(x) * g'(x) + f'(x) dot g(x) + \ + f(x) dot g'(x) $ ], /* - [Quotient Rule], [$ (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2 $], [$ (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2 $], - [Chain Rule], [$ f(g(x)) $], [$ f'(g(x)) * g'(x) $], + [Quotient Rule], [$ (f'(x) dot g(x) - f(x) * g'(x)) / (g(x))^2 $], [$ (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2 $], + [Chain Rule], [$ f(g(x)) $], [$ f'(g(x)) dot g'(x) $], [Euler’s Number Exponent Rule], [$ e^x $], [$ e^x $], - [Constant Exponent Rule], [$ a^x $], [$ a^x * ln(a) $], + [Constant Exponent Rule], [$ a^x $], [$ a^x dot ln(a) $], [Natural Log Rule], [$ ln(x) $], [$ 1 / x $], - [Logarithm Rule], [$ log_a(x) $], [$ 1 / (x * ln(a)) $], + [Logarithm Rule], [$ log_a(x) $], [$ 1 / (x dot ln(a)) $], [Sine Rule], [$ sin(x) $], [$ cos(x) $], [Cosine Rule], [$ cos(x) $], [$ -sin(x) $], [Tangent Rule], [$ tan(x) $], [$ sec^2(x) $], - [Cosecant Rule], [$ csc(x) $], [$ -csc(x) * cot(x) $], - [Secant Rule], [$ sec(x) $], [$ sec(x) * tan(x) $], + [Cosecant Rule], [$ csc(x) $], [$ -csc(x) dot cot(x) $], + [Secant Rule], [$ sec(x) $], [$ sec(x) dot tan(x) $], [Cotangent Rule], [$ cot(x) $], [$ -csc^2(x) $], */ )