School/.venv/lib/python3.9/site-packages/pandas/io/formats/style.py
Kristofers Solo 1e065cc4b2 Updated .venv
2021-11-22 17:11:45 +02:00

2916 lines
104 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Module for applying conditional formatting to DataFrames and Series.
"""
from __future__ import annotations
from contextlib import contextmanager
import copy
from functools import partial
import operator
from typing import (
Any,
Callable,
Hashable,
Sequence,
)
import warnings
import numpy as np
from pandas._config import get_option
from pandas._typing import (
Axis,
FilePathOrBuffer,
FrameOrSeries,
FrameOrSeriesUnion,
IndexLabel,
Scalar,
)
from pandas.compat._optional import import_optional_dependency
from pandas.util._decorators import doc
import pandas as pd
from pandas import (
IndexSlice,
RangeIndex,
)
from pandas.api.types import is_list_like
from pandas.core import generic
import pandas.core.common as com
from pandas.core.frame import (
DataFrame,
Series,
)
from pandas.core.generic import NDFrame
from pandas.io.formats.format import save_to_buffer
jinja2 = import_optional_dependency("jinja2", extra="DataFrame.style requires jinja2.")
from pandas.io.formats.style_render import (
CSSProperties,
CSSStyles,
StylerRenderer,
Subset,
Tooltips,
maybe_convert_css_to_tuples,
non_reducing_slice,
)
try:
from matplotlib import colors
import matplotlib.pyplot as plt
has_mpl = True
except ImportError:
has_mpl = False
no_mpl_message = "{0} requires matplotlib."
@contextmanager
def _mpl(func: Callable):
if has_mpl:
yield plt, colors
else:
raise ImportError(no_mpl_message.format(func.__name__))
class Styler(StylerRenderer):
r"""
Helps style a DataFrame or Series according to the data with HTML and CSS.
Parameters
----------
data : Series or DataFrame
Data to be styled - either a Series or DataFrame.
precision : int
Precision to round floats to, defaults to pd.options.display.precision.
table_styles : list-like, default None
List of {selector: (attr, value)} dicts; see Notes.
uuid : str, default None
A unique identifier to avoid CSS collisions; generated automatically.
caption : str, tuple, default None
String caption to attach to the table. Tuple only used for LaTeX dual captions.
table_attributes : str, default None
Items that show up in the opening ``<table>`` tag
in addition to automatic (by default) id.
cell_ids : bool, default True
If True, each cell will have an ``id`` attribute in their HTML tag.
The ``id`` takes the form ``T_<uuid>_row<num_row>_col<num_col>``
where ``<uuid>`` is the unique identifier, ``<num_row>`` is the row
number and ``<num_col>`` is the column number.
na_rep : str, optional
Representation for missing values.
If ``na_rep`` is None, no special formatting is applied.
.. versionadded:: 1.0.0
uuid_len : int, default 5
If ``uuid`` is not specified, the length of the ``uuid`` to randomly generate
expressed in hex characters, in range [0, 32].
.. versionadded:: 1.2.0
decimal : str, default "."
Character used as decimal separator for floats, complex and integers
.. versionadded:: 1.3.0
thousands : str, optional, default None
Character used as thousands separator for floats, complex and integers
.. versionadded:: 1.3.0
escape : str, optional
Use 'html' to replace the characters ``&``, ``<``, ``>``, ``'``, and ``"``
in cell display string with HTML-safe sequences.
Use 'latex' to replace the characters ``&``, ``%``, ``$``, ``#``, ``_``,
``{``, ``}``, ``~``, ``^``, and ``\`` in the cell display string with
LaTeX-safe sequences.
.. versionadded:: 1.3.0
Attributes
----------
env : Jinja2 jinja2.Environment
template : Jinja2 Template
loader : Jinja2 Loader
See Also
--------
DataFrame.style : Return a Styler object containing methods for building
a styled HTML representation for the DataFrame.
Notes
-----
Most styling will be done by passing style functions into
``Styler.apply`` or ``Styler.applymap``. Style functions should
return values with strings containing CSS ``'attr: value'`` that will
be applied to the indicated cells.
If using in the Jupyter notebook, Styler has defined a ``_repr_html_``
to automatically render itself. Otherwise call Styler.render to get
the generated HTML.
CSS classes are attached to the generated HTML
* Index and Column names include ``index_name`` and ``level<k>``
where `k` is its level in a MultiIndex
* Index label cells include
* ``row_heading``
* ``row<n>`` where `n` is the numeric position of the row
* ``level<k>`` where `k` is the level in a MultiIndex
* Column label cells include
* ``col_heading``
* ``col<n>`` where `n` is the numeric position of the column
* ``level<k>`` where `k` is the level in a MultiIndex
* Blank cells include ``blank``
* Data cells include ``data``
"""
def __init__(
self,
data: FrameOrSeriesUnion,
precision: int | None = None,
table_styles: CSSStyles | None = None,
uuid: str | None = None,
caption: str | tuple | None = None,
table_attributes: str | None = None,
cell_ids: bool = True,
na_rep: str | None = None,
uuid_len: int = 5,
decimal: str = ".",
thousands: str | None = None,
escape: str | None = None,
):
super().__init__(
data=data,
uuid=uuid,
uuid_len=uuid_len,
table_styles=table_styles,
table_attributes=table_attributes,
caption=caption,
cell_ids=cell_ids,
)
# validate ordered args
self.precision = precision # can be removed on set_precision depr cycle
self.na_rep = na_rep # can be removed on set_na_rep depr cycle
self.format(
formatter=None,
precision=precision,
na_rep=na_rep,
escape=escape,
decimal=decimal,
thousands=thousands,
)
def _repr_html_(self) -> str:
"""
Hooks into Jupyter notebook rich display system.
"""
return self.render()
def render(
self,
sparse_index: bool | None = None,
sparse_columns: bool | None = None,
**kwargs,
) -> str:
"""
Render the ``Styler`` including all applied styles to HTML.
Parameters
----------
sparse_index : bool, optional
Whether to sparsify the display of a hierarchical index. Setting to False
will display each explicit level element in a hierarchical key for each row.
Defaults to ``pandas.options.styler.sparse.index`` value.
sparse_columns : bool, optional
Whether to sparsify the display of a hierarchical index. Setting to False
will display each explicit level element in a hierarchical key for each row.
Defaults to ``pandas.options.styler.sparse.columns`` value.
**kwargs
Any additional keyword arguments are passed
through to ``self.template.render``.
This is useful when you need to provide
additional variables for a custom template.
Returns
-------
rendered : str
The rendered HTML.
Notes
-----
Styler objects have defined the ``_repr_html_`` method
which automatically calls ``self.render()`` when it's the
last item in a Notebook cell. When calling ``Styler.render()``
directly, wrap the result in ``IPython.display.HTML`` to view
the rendered HTML in the notebook.
Pandas uses the following keys in render. Arguments passed
in ``**kwargs`` take precedence, so think carefully if you want
to override them:
* head
* cellstyle
* body
* uuid
* table_styles
* caption
* table_attributes
"""
if sparse_index is None:
sparse_index = get_option("styler.sparse.index")
if sparse_columns is None:
sparse_columns = get_option("styler.sparse.columns")
return self._render_html(sparse_index, sparse_columns, **kwargs)
def set_tooltips(
self,
ttips: DataFrame,
props: CSSProperties | None = None,
css_class: str | None = None,
) -> Styler:
"""
Set the DataFrame of strings on ``Styler`` generating ``:hover`` tooltips.
These string based tooltips are only applicable to ``<td>`` HTML elements,
and cannot be used for column or index headers.
.. versionadded:: 1.3.0
Parameters
----------
ttips : DataFrame
DataFrame containing strings that will be translated to tooltips, mapped
by identical column and index values that must exist on the underlying
Styler data. None, NaN values, and empty strings will be ignored and
not affect the rendered HTML.
props : list-like or str, optional
List of (attr, value) tuples or a valid CSS string. If ``None`` adopts
the internal default values described in notes.
css_class : str, optional
Name of the tooltip class used in CSS, should conform to HTML standards.
Only useful if integrating tooltips with external CSS. If ``None`` uses the
internal default value 'pd-t'.
Returns
-------
self : Styler
Notes
-----
Tooltips are created by adding `<span class="pd-t"></span>` to each data cell
and then manipulating the table level CSS to attach pseudo hover and pseudo
after selectors to produce the required the results.
The default properties for the tooltip CSS class are:
- visibility: hidden
- position: absolute
- z-index: 1
- background-color: black
- color: white
- transform: translate(-20px, -20px)
The property 'visibility: hidden;' is a key prerequisite to the hover
functionality, and should always be included in any manual properties
specification, using the ``props`` argument.
Tooltips are not designed to be efficient, and can add large amounts of
additional HTML for larger tables, since they also require that ``cell_ids``
is forced to `True`.
Examples
--------
Basic application
>>> df = pd.DataFrame(data=[[0, 1], [2, 3]])
>>> ttips = pd.DataFrame(
... data=[["Min", ""], [np.nan, "Max"]], columns=df.columns, index=df.index
... )
>>> s = df.style.set_tooltips(ttips).render()
Optionally controlling the tooltip visual display
>>> df.style.set_tooltips(ttips, css_class='tt-add', props=[
... ('visibility', 'hidden'),
... ('position', 'absolute'),
... ('z-index', 1)])
>>> df.style.set_tooltips(ttips, css_class='tt-add',
... props='visibility:hidden; position:absolute; z-index:1;')
"""
if not self.cell_ids:
# tooltips not optimised for individual cell check. requires reasonable
# redesign and more extensive code for a feature that might be rarely used.
raise NotImplementedError(
"Tooltips can only render with 'cell_ids' is True."
)
if not ttips.index.is_unique or not ttips.columns.is_unique:
raise KeyError(
"Tooltips render only if `ttips` has unique index and columns."
)
if self.tooltips is None: # create a default instance if necessary
self.tooltips = Tooltips()
self.tooltips.tt_data = ttips
if props:
self.tooltips.class_properties = props
if css_class:
self.tooltips.class_name = css_class
return self
@doc(
NDFrame.to_excel,
klass="Styler",
storage_options=generic._shared_docs["storage_options"],
)
def to_excel(
self,
excel_writer,
sheet_name: str = "Sheet1",
na_rep: str = "",
float_format: str | None = None,
columns: Sequence[Hashable] | None = None,
header: Sequence[Hashable] | bool = True,
index: bool = True,
index_label: IndexLabel | None = None,
startrow: int = 0,
startcol: int = 0,
engine: str | None = None,
merge_cells: bool = True,
encoding: str | None = None,
inf_rep: str = "inf",
verbose: bool = True,
freeze_panes: tuple[int, int] | None = None,
) -> None:
from pandas.io.formats.excel import ExcelFormatter
formatter = ExcelFormatter(
self,
na_rep=na_rep,
cols=columns,
header=header,
float_format=float_format,
index=index,
index_label=index_label,
merge_cells=merge_cells,
inf_rep=inf_rep,
)
formatter.write(
excel_writer,
sheet_name=sheet_name,
startrow=startrow,
startcol=startcol,
freeze_panes=freeze_panes,
engine=engine,
)
def to_latex(
self,
buf: FilePathOrBuffer[str] | None = None,
*,
column_format: str | None = None,
position: str | None = None,
position_float: str | None = None,
hrules: bool = False,
label: str | None = None,
caption: str | tuple | None = None,
sparse_index: bool | None = None,
sparse_columns: bool | None = None,
multirow_align: str = "c",
multicol_align: str = "r",
siunitx: bool = False,
encoding: str | None = None,
convert_css: bool = False,
):
r"""
Write Styler to a file, buffer or string in LaTeX format.
.. versionadded:: 1.3.0
Parameters
----------
buf : str, Path, or StringIO-like, optional, default None
Buffer to write to. If ``None``, the output is returned as a string.
column_format : str, optional
The LaTeX column specification placed in location:
\\begin{tabular}{<column_format>}
Defaults to 'l' for index and
non-numeric data columns, and, for numeric data columns,
to 'r' by default, or 'S' if ``siunitx`` is ``True``.
position : str, optional
The LaTeX positional argument (e.g. 'h!') for tables, placed in location:
\\begin{table}[<position>]
position_float : {"centering", "raggedleft", "raggedright"}, optional
The LaTeX float command placed in location:
\\begin{table}[<position>]
\\<position_float>
hrules : bool, default False
Set to `True` to add \\toprule, \\midrule and \\bottomrule from the
{booktabs} LaTeX package.
label : str, optional
The LaTeX label included as: \\label{<label>}.
This is used with \\ref{<label>} in the main .tex file.
caption : str, tuple, optional
If string, the LaTeX table caption included as: \\caption{<caption>}.
If tuple, i.e ("full caption", "short caption"), the caption included
as: \\caption[<caption[1]>]{<caption[0]>}.
sparse_index : bool, optional
Whether to sparsify the display of a hierarchical index. Setting to False
will display each explicit level element in a hierarchical key for each row.
Defaults to ``pandas.options.styler.sparse.index`` value.
sparse_columns : bool, optional
Whether to sparsify the display of a hierarchical index. Setting to False
will display each explicit level element in a hierarchical key for each row.
Defaults to ``pandas.options.styler.sparse.columns`` value.
multirow_align : {"c", "t", "b"}
If sparsifying hierarchical MultiIndexes whether to align text centrally,
at the top or bottom.
multicol_align : {"r", "c", "l"}
If sparsifying hierarchical MultiIndex columns whether to align text at
the left, centrally, or at the right.
siunitx : bool, default False
Set to ``True`` to structure LaTeX compatible with the {siunitx} package.
encoding : str, default "utf-8"
Character encoding setting.
convert_css : bool, default False
Convert simple cell-styles from CSS to LaTeX format. Any CSS not found in
conversion table is dropped. A style can be forced by adding option
`--latex`. See notes.
Returns
-------
str or None
If `buf` is None, returns the result as a string. Otherwise returns `None`.
See Also
--------
Styler.format: Format the text display value of cells.
Notes
-----
**Latex Packages**
For the following features we recommend the following LaTeX inclusions:
===================== ==========================================================
Feature Inclusion
===================== ==========================================================
sparse columns none: included within default {tabular} environment
sparse rows \\usepackage{multirow}
hrules \\usepackage{booktabs}
colors \\usepackage[table]{xcolor}
siunitx \\usepackage{siunitx}
bold (with siunitx) | \\usepackage{etoolbox}
| \\robustify\\bfseries
| \\sisetup{detect-all = true} *(within {document})*
italic (with siunitx) | \\usepackage{etoolbox}
| \\robustify\\itshape
| \\sisetup{detect-all = true} *(within {document})*
===================== ==========================================================
**Cell Styles**
LaTeX styling can only be rendered if the accompanying styling functions have
been constructed with appropriate LaTeX commands. All styling
functionality is built around the concept of a CSS ``(<attribute>, <value>)``
pair (see `Table Visualization <../../user_guide/style.ipynb>`_), and this
should be replaced by a LaTeX
``(<command>, <options>)`` approach. Each cell will be styled individually
using nested LaTeX commands with their accompanied options.
For example the following code will highlight and bold a cell in HTML-CSS:
>>> df = pd.DataFrame([[1,2], [3,4]])
>>> s = df.style.highlight_max(axis=None,
... props='background-color:red; font-weight:bold;')
>>> s.render()
The equivalent using LaTeX only commands is the following:
>>> s = df.style.highlight_max(axis=None,
... props='cellcolor:{red}; bfseries: ;')
>>> s.to_latex()
Internally these structured LaTeX ``(<command>, <options>)`` pairs
are translated to the
``display_value`` with the default structure:
``\<command><options> <display_value>``.
Where there are multiple commands the latter is nested recursively, so that
the above example highlighed cell is rendered as
``\cellcolor{red} \bfseries 4``.
Occasionally this format does not suit the applied command, or
combination of LaTeX packages that is in use, so additional flags can be
added to the ``<options>``, within the tuple, to result in different
positions of required braces (the **default** being the same as ``--nowrap``):
=================================== ============================================
Tuple Format Output Structure
=================================== ============================================
(<command>,<options>) \\<command><options> <display_value>
(<command>,<options> ``--nowrap``) \\<command><options> <display_value>
(<command>,<options> ``--rwrap``) \\<command><options>{<display_value>}
(<command>,<options> ``--wrap``) {\\<command><options> <display_value>}
(<command>,<options> ``--lwrap``) {\\<command><options>} <display_value>
(<command>,<options> ``--dwrap``) {\\<command><options>}{<display_value>}
=================================== ============================================
For example the `textbf` command for font-weight
should always be used with `--rwrap` so ``('textbf', '--rwrap')`` will render a
working cell, wrapped with braces, as ``\textbf{<display_value>}``.
A more comprehensive example is as follows:
>>> df = pd.DataFrame([[1, 2.2, "dogs"], [3, 4.4, "cats"], [2, 6.6, "cows"]],
... index=["ix1", "ix2", "ix3"],
... columns=["Integers", "Floats", "Strings"])
>>> s = df.style.highlight_max(
... props='cellcolor:[HTML]{FFFF00}; color:{red};'
... 'textit:--rwrap; textbf:--rwrap;'
... )
>>> s.to_latex()
.. figure:: ../../_static/style/latex_1.png
**Table Styles**
Internally Styler uses its ``table_styles`` object to parse the
``column_format``, ``position``, ``position_float``, and ``label``
input arguments. These arguments are added to table styles in the format:
.. code-block:: python
set_table_styles([
{"selector": "column_format", "props": f":{column_format};"},
{"selector": "position", "props": f":{position};"},
{"selector": "position_float", "props": f":{position_float};"},
{"selector": "label", "props": f":{{{label.replace(':','§')}}};"}
], overwrite=False)
Exception is made for the ``hrules`` argument which, in fact, controls all three
commands: ``toprule``, ``bottomrule`` and ``midrule`` simultaneously. Instead of
setting ``hrules`` to ``True``, it is also possible to set each
individual rule definition, by manually setting the ``table_styles``,
for example below we set a regular ``toprule``, set an ``hline`` for
``bottomrule`` and exclude the ``midrule``:
.. code-block:: python
set_table_styles([
{'selector': 'toprule', 'props': ':toprule;'},
{'selector': 'bottomrule', 'props': ':hline;'},
], overwrite=False)
If other ``commands`` are added to table styles they will be detected, and
positioned immediately above the '\\begin{tabular}' command. For example to
add odd and even row coloring, from the {colortbl} package, in format
``\rowcolors{1}{pink}{red}``, use:
.. code-block:: python
set_table_styles([
{'selector': 'rowcolors', 'props': ':{1}{pink}{red};'}
], overwrite=False)
A more comprehensive example using these arguments is as follows:
>>> df.columns = pd.MultiIndex.from_tuples([
... ("Numeric", "Integers"),
... ("Numeric", "Floats"),
... ("Non-Numeric", "Strings")
... ])
>>> df.index = pd.MultiIndex.from_tuples([
... ("L0", "ix1"), ("L0", "ix2"), ("L1", "ix3")
... ])
>>> s = df.style.highlight_max(
... props='cellcolor:[HTML]{FFFF00}; color:{red}; itshape:; bfseries:;'
... )
>>> s.to_latex(
... column_format="rrrrr", position="h", position_float="centering",
... hrules=True, label="table:5", caption="Styled LaTeX Table",
... multirow_align="t", multicol_align="r"
... )
.. figure:: ../../_static/style/latex_2.png
**Formatting**
To format values :meth:`Styler.format` should be used prior to calling
`Styler.to_latex`, as well as other methods such as :meth:`Styler.hide_index`
or :meth:`Styler.hide_columns`, for example:
>>> s.clear()
>>> s.table_styles = []
>>> s.caption = None
>>> s.format({
... ("Numeric", "Integers"): '\${}',
... ("Numeric", "Floats"): '{:.3f}',
... ("Non-Numeric", "Strings"): str.upper
... })
>>> s.to_latex()
\begin{tabular}{llrrl}
{} & {} & \multicolumn{2}{r}{Numeric} & {Non-Numeric} \\
{} & {} & {Integers} & {Floats} & {Strings} \\
\multirow[c]{2}{*}{L0} & ix1 & \\$1 & 2.200 & DOGS \\
& ix2 & \$3 & 4.400 & CATS \\
L1 & ix3 & \$2 & 6.600 & COWS \\
\end{tabular}
**CSS Conversion**
This method can convert a Styler constructured with HTML-CSS to LaTeX using
the following limited conversions.
================== ==================== ============= ==========================
CSS Attribute CSS value LaTeX Command LaTeX Options
================== ==================== ============= ==========================
font-weight | bold | bfseries
| bolder | bfseries
font-style | italic | itshape
| oblique | slshape
background-color | red cellcolor | {red}--lwrap
| #fe01ea | [HTML]{FE01EA}--lwrap
| #f0e | [HTML]{FF00EE}--lwrap
| rgb(128,255,0) | [rgb]{0.5,1,0}--lwrap
| rgba(128,0,0,0.5) | [rgb]{0.5,0,0}--lwrap
| rgb(25%,255,50%) | [rgb]{0.25,1,0.5}--lwrap
color | red color | {red}
| #fe01ea | [HTML]{FE01EA}
| #f0e | [HTML]{FF00EE}
| rgb(128,255,0) | [rgb]{0.5,1,0}
| rgba(128,0,0,0.5) | [rgb]{0.5,0,0}
| rgb(25%,255,50%) | [rgb]{0.25,1,0.5}
================== ==================== ============= ==========================
It is also possible to add user-defined LaTeX only styles to a HTML-CSS Styler
using the ``--latex`` flag, and to add LaTeX parsing options that the
converter will detect within a CSS-comment.
>>> df = pd.DataFrame([[1]])
>>> df.style.set_properties(
... **{"font-weight": "bold /* --dwrap */", "Huge": "--latex--rwrap"}
... ).to_latex(convert_css=True)
\begin{tabular}{lr}
{} & {0} \\
0 & {\bfseries}{\Huge{1}} \\
\end{tabular}
"""
obj = self._copy(deepcopy=True) # manipulate table_styles on obj, not self
table_selectors = (
[style["selector"] for style in self.table_styles]
if self.table_styles is not None
else []
)
if column_format is not None:
# add more recent setting to table_styles
obj.set_table_styles(
[{"selector": "column_format", "props": f":{column_format}"}],
overwrite=False,
)
elif "column_format" in table_selectors:
pass # adopt what has been previously set in table_styles
else:
# create a default: set float, complex, int cols to 'r' ('S'), index to 'l'
_original_columns = self.data.columns
self.data.columns = RangeIndex(stop=len(self.data.columns))
numeric_cols = self.data._get_numeric_data().columns.to_list()
self.data.columns = _original_columns
column_format = "" if self.hide_index_ else "l" * self.data.index.nlevels
for ci, _ in enumerate(self.data.columns):
if ci not in self.hidden_columns:
column_format += (
("r" if not siunitx else "S") if ci in numeric_cols else "l"
)
obj.set_table_styles(
[{"selector": "column_format", "props": f":{column_format}"}],
overwrite=False,
)
if position:
obj.set_table_styles(
[{"selector": "position", "props": f":{position}"}],
overwrite=False,
)
if position_float:
if position_float not in ["raggedright", "raggedleft", "centering"]:
raise ValueError(
f"`position_float` should be one of "
f"'raggedright', 'raggedleft', 'centering', "
f"got: '{position_float}'"
)
obj.set_table_styles(
[{"selector": "position_float", "props": f":{position_float}"}],
overwrite=False,
)
if hrules:
obj.set_table_styles(
[
{"selector": "toprule", "props": ":toprule"},
{"selector": "midrule", "props": ":midrule"},
{"selector": "bottomrule", "props": ":bottomrule"},
],
overwrite=False,
)
if label:
obj.set_table_styles(
[{"selector": "label", "props": f":{{{label.replace(':', '§')}}}"}],
overwrite=False,
)
if caption:
obj.set_caption(caption)
if sparse_index is None:
sparse_index = get_option("styler.sparse.index")
if sparse_columns is None:
sparse_columns = get_option("styler.sparse.columns")
latex = obj._render_latex(
sparse_index=sparse_index,
sparse_columns=sparse_columns,
multirow_align=multirow_align,
multicol_align=multicol_align,
convert_css=convert_css,
)
return save_to_buffer(latex, buf=buf, encoding=encoding)
def to_html(
self,
buf: FilePathOrBuffer[str] | None = None,
*,
table_uuid: str | None = None,
table_attributes: str | None = None,
encoding: str | None = None,
doctype_html: bool = False,
exclude_styles: bool = False,
):
"""
Write Styler to a file, buffer or string in HTML-CSS format.
.. versionadded:: 1.3.0
Parameters
----------
buf : str, Path, or StringIO-like, optional, default None
Buffer to write to. If ``None``, the output is returned as a string.
table_uuid : str, optional
Id attribute assigned to the <table> HTML element in the format:
``<table id="T_<table_uuid>" ..>``
If not given uses Styler's initially assigned value.
table_attributes : str, optional
Attributes to assign within the `<table>` HTML element in the format:
``<table .. <table_attributes> >``
If not given defaults to Styler's preexisting value.
encoding : str, optional
Character encoding setting for file output, and HTML meta tags,
defaults to "utf-8" if None.
doctype_html : bool, default False
Whether to output a fully structured HTML file including all
HTML elements, or just the core ``<style>`` and ``<table>`` elements.
exclude_styles : bool, default False
Whether to include the ``<style>`` element and all associated element
``class`` and ``id`` identifiers, or solely the ``<table>`` element without
styling identifiers.
Returns
-------
str or None
If `buf` is None, returns the result as a string. Otherwise returns `None`.
See Also
--------
DataFrame.to_html: Write a DataFrame to a file, buffer or string in HTML format.
"""
if table_uuid:
self.set_uuid(table_uuid)
if table_attributes:
self.set_table_attributes(table_attributes)
# Build HTML string..
html = self.render(
exclude_styles=exclude_styles,
encoding=encoding if encoding else "utf-8",
doctype_html=doctype_html,
)
return save_to_buffer(
html, buf=buf, encoding=(encoding if buf is not None else None)
)
def set_td_classes(self, classes: DataFrame) -> Styler:
"""
Set the DataFrame of strings added to the ``class`` attribute of ``<td>``
HTML elements.
Parameters
----------
classes : DataFrame
DataFrame containing strings that will be translated to CSS classes,
mapped by identical column and index key values that must exist on the
underlying Styler data. None, NaN values, and empty strings will
be ignored and not affect the rendered HTML.
Returns
-------
self : Styler
See Also
--------
Styler.set_table_styles: Set the table styles included within the ``<style>``
HTML element.
Styler.set_table_attributes: Set the table attributes added to the ``<table>``
HTML element.
Notes
-----
Can be used in combination with ``Styler.set_table_styles`` to define an
internal CSS solution without reference to external CSS files.
Examples
--------
>>> df = pd.DataFrame(data=[[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"])
>>> classes = pd.DataFrame([
... ["min-val red", "", "blue"],
... ["red", None, "blue max-val"]
... ], index=df.index, columns=df.columns)
>>> df.style.set_td_classes(classes)
Using `MultiIndex` columns and a `classes` `DataFrame` as a subset of the
underlying,
>>> df = pd.DataFrame([[1,2],[3,4]], index=["a", "b"],
... columns=[["level0", "level0"], ["level1a", "level1b"]])
>>> classes = pd.DataFrame(["min-val"], index=["a"],
... columns=[["level0"],["level1a"]])
>>> df.style.set_td_classes(classes)
Form of the output with new additional css classes,
>>> df = pd.DataFrame([[1]])
>>> css = pd.DataFrame([["other-class"]])
>>> s = Styler(df, uuid="_", cell_ids=False).set_td_classes(css)
>>> s.hide_index().render()
'<style type="text/css"></style>'
'<table id="T__">'
' <thead>'
' <tr><th class="col_heading level0 col0" >0</th></tr>'
' </thead>'
' <tbody>'
' <tr><td class="data row0 col0 other-class" >1</td></tr>'
' </tbody>'
'</table>'
"""
if not classes.index.is_unique or not classes.columns.is_unique:
raise KeyError(
"Classes render only if `classes` has unique index and columns."
)
classes = classes.reindex_like(self.data)
for r, row_tup in enumerate(classes.itertuples()):
for c, value in enumerate(row_tup[1:]):
if not (pd.isna(value) or value == ""):
self.cell_context[(r, c)] = str(value)
return self
def _update_ctx(self, attrs: DataFrame) -> None:
"""
Update the state of the ``Styler`` for data cells.
Collects a mapping of {index_label: [('<property>', '<value>'), ..]}.
Parameters
----------
attrs : DataFrame
should contain strings of '<property>: <value>;<prop2>: <val2>'
Whitespace shouldn't matter and the final trailing ';' shouldn't
matter.
"""
if not self.index.is_unique or not self.columns.is_unique:
raise KeyError(
"`Styler.apply` and `.applymap` are not compatible "
"with non-unique index or columns."
)
for cn in attrs.columns:
for rn, c in attrs[[cn]].itertuples():
if not c:
continue
css_list = maybe_convert_css_to_tuples(c)
i, j = self.index.get_loc(rn), self.columns.get_loc(cn)
self.ctx[(i, j)].extend(css_list)
def _copy(self, deepcopy: bool = False) -> Styler:
"""
Copies a Styler, allowing for deepcopy or shallow copy
Copying a Styler aims to recreate a new Styler object which contains the same
data and styles as the original.
Data dependent attributes [copied and NOT exported]:
- formatting (._display_funcs)
- hidden index values or column values (.hidden_rows, .hidden_columns)
- tooltips
- cell_context (cell css classes)
- ctx (cell css styles)
- caption
Non-data dependent attributes [copied and exported]:
- hidden index state and hidden columns state (.hide_index_, .hide_columns_)
- table_attributes
- table_styles
- applied styles (_todo)
"""
# GH 40675
styler = Styler(
self.data, # populates attributes 'data', 'columns', 'index' as shallow
uuid_len=self.uuid_len,
)
shallow = [ # simple string or boolean immutables
"hide_index_",
"hide_columns_",
"table_attributes",
"cell_ids",
"caption",
]
deep = [ # nested lists or dicts
"_display_funcs",
"hidden_rows",
"hidden_columns",
"ctx",
"cell_context",
"_todo",
"table_styles",
"tooltips",
]
for attr in shallow:
setattr(styler, attr, getattr(self, attr))
for attr in deep:
val = getattr(self, attr)
setattr(styler, attr, copy.deepcopy(val) if deepcopy else val)
return styler
def __copy__(self) -> Styler:
return self._copy(deepcopy=False)
def __deepcopy__(self, memo) -> Styler:
return self._copy(deepcopy=True)
def clear(self) -> None:
"""
Reset the ``Styler``, removing any previously applied styles.
Returns None.
"""
self.ctx.clear()
self.tooltips = None
self.cell_context.clear()
self._todo.clear()
self.hide_index_ = False
self.hidden_columns = []
# self.format and self.table_styles may be dependent on user
# input in self.__init__()
def _apply(
self,
func: Callable[..., Styler],
axis: Axis | None = 0,
subset: Subset | None = None,
**kwargs,
) -> Styler:
subset = slice(None) if subset is None else subset
subset = non_reducing_slice(subset)
data = self.data.loc[subset]
if axis is not None:
result = data.apply(func, axis=axis, result_type="expand", **kwargs)
result.columns = data.columns
else:
result = func(data, **kwargs)
if not isinstance(result, DataFrame):
if not isinstance(result, np.ndarray):
raise TypeError(
f"Function {repr(func)} must return a DataFrame or ndarray "
f"when passed to `Styler.apply` with axis=None"
)
if not (data.shape == result.shape):
raise ValueError(
f"Function {repr(func)} returned ndarray with wrong shape.\n"
f"Result has shape: {result.shape}\n"
f"Expected shape: {data.shape}"
)
result = DataFrame(result, index=data.index, columns=data.columns)
elif not (
result.index.equals(data.index) and result.columns.equals(data.columns)
):
raise ValueError(
f"Result of {repr(func)} must have identical "
f"index and columns as the input"
)
if result.shape != data.shape:
raise ValueError(
f"Function {repr(func)} returned the wrong shape.\n"
f"Result has shape: {result.shape}\n"
f"Expected shape: {data.shape}"
)
self._update_ctx(result)
return self
def apply(
self,
func: Callable[..., Styler],
axis: Axis | None = 0,
subset: Subset | None = None,
**kwargs,
) -> Styler:
"""
Apply a CSS-styling function column-wise, row-wise, or table-wise.
Updates the HTML representation with the result.
Parameters
----------
func : function
``func`` should take a Series if ``axis`` in [0,1] and return an object
of same length, also with identical index if the object is a Series.
``func`` should take a DataFrame if ``axis`` is ``None`` and return either
an ndarray with the same shape or a DataFrame with identical columns and
index.
.. versionchanged:: 1.3.0
axis : {0 or 'index', 1 or 'columns', None}, default 0
Apply to each column (``axis=0`` or ``'index'``), to each row
(``axis=1`` or ``'columns'``), or to the entire DataFrame at once
with ``axis=None``.
subset : label, array-like, IndexSlice, optional
A valid 2d input to `DataFrame.loc[<subset>]`, or, in the case of a 1d input
or single key, to `DataFrame.loc[:, <subset>]` where the columns are
prioritised, to limit ``data`` to *before* applying the function.
**kwargs : dict
Pass along to ``func``.
Returns
-------
self : Styler
See Also
--------
Styler.applymap: Apply a CSS-styling function elementwise.
Notes
-----
The elements of the output of ``func`` should be CSS styles as strings, in the
format 'attribute: value; attribute2: value2; ...' or,
if nothing is to be applied to that element, an empty string or ``None``.
This is similar to ``DataFrame.apply``, except that ``axis=None``
applies the function to the entire DataFrame at once,
rather than column-wise or row-wise.
Examples
--------
>>> def highlight_max(x, color):
... return np.where(x == np.nanmax(x.to_numpy()), f"color: {color};", None)
>>> df = pd.DataFrame(np.random.randn(5, 2), columns=["A", "B"])
>>> df.style.apply(highlight_max, color='red')
>>> df.style.apply(highlight_max, color='blue', axis=1)
>>> df.style.apply(highlight_max, color='green', axis=None)
Using ``subset`` to restrict application to a single column or multiple columns
>>> df.style.apply(highlight_max, color='red', subset="A")
>>> df.style.apply(highlight_max, color='red', subset=["A", "B"])
Using a 2d input to ``subset`` to select rows in addition to columns
>>> df.style.apply(highlight_max, color='red', subset=([0,1,2], slice(None))
>>> df.style.apply(highlight_max, color='red', subset=(slice(0,5,2), "A")
"""
self._todo.append(
(lambda instance: getattr(instance, "_apply"), (func, axis, subset), kwargs)
)
return self
def _applymap(
self, func: Callable, subset: Subset | None = None, **kwargs
) -> Styler:
func = partial(func, **kwargs) # applymap doesn't take kwargs?
if subset is None:
subset = IndexSlice[:]
subset = non_reducing_slice(subset)
result = self.data.loc[subset].applymap(func)
self._update_ctx(result)
return self
def applymap(
self, func: Callable, subset: Subset | None = None, **kwargs
) -> Styler:
"""
Apply a CSS-styling function elementwise.
Updates the HTML representation with the result.
Parameters
----------
func : function
``func`` should take a scalar and return a scalar.
subset : label, array-like, IndexSlice, optional
A valid 2d input to `DataFrame.loc[<subset>]`, or, in the case of a 1d input
or single key, to `DataFrame.loc[:, <subset>]` where the columns are
prioritised, to limit ``data`` to *before* applying the function.
**kwargs : dict
Pass along to ``func``.
Returns
-------
self : Styler
See Also
--------
Styler.apply: Apply a CSS-styling function column-wise, row-wise, or table-wise.
Notes
-----
The elements of the output of ``func`` should be CSS styles as strings, in the
format 'attribute: value; attribute2: value2; ...' or,
if nothing is to be applied to that element, an empty string or ``None``.
Examples
--------
>>> def color_negative(v, color):
... return f"color: {color};" if v < 0 else None
>>> df = pd.DataFrame(np.random.randn(5, 2), columns=["A", "B"])
>>> df.style.applymap(color_negative, color='red')
Using ``subset`` to restrict application to a single column or multiple columns
>>> df.style.applymap(color_negative, color='red', subset="A")
>>> df.style.applymap(color_negative, color='red', subset=["A", "B"])
Using a 2d input to ``subset`` to select rows in addition to columns
>>> df.style.applymap(color_negative, color='red', subset=([0,1,2], slice(None))
>>> df.style.applymap(color_negative, color='red', subset=(slice(0,5,2), "A")
"""
self._todo.append(
(lambda instance: getattr(instance, "_applymap"), (func, subset), kwargs)
)
return self
def where(
self,
cond: Callable,
value: str,
other: str | None = None,
subset: Subset | None = None,
**kwargs,
) -> Styler:
"""
Apply CSS-styles based on a conditional function elementwise.
.. deprecated:: 1.3.0
Updates the HTML representation with a style which is
selected in accordance with the return value of a function.
Parameters
----------
cond : callable
``cond`` should take a scalar, and optional keyword arguments, and return
a boolean.
value : str
Applied when ``cond`` returns true.
other : str
Applied when ``cond`` returns false.
subset : label, array-like, IndexSlice, optional
A valid 2d input to `DataFrame.loc[<subset>]`, or, in the case of a 1d input
or single key, to `DataFrame.loc[:, <subset>]` where the columns are
prioritised, to limit ``data`` to *before* applying the function.
**kwargs : dict
Pass along to ``cond``.
Returns
-------
self : Styler
See Also
--------
Styler.applymap: Apply a CSS-styling function elementwise.
Styler.apply: Apply a CSS-styling function column-wise, row-wise, or table-wise.
Notes
-----
This method is deprecated.
This method is a convenience wrapper for :meth:`Styler.applymap`, which we
recommend using instead.
The example:
>>> df = pd.DataFrame([[1, 2], [3, 4]])
>>> def cond(v, limit=4):
... return v > 1 and v != limit
>>> df.style.where(cond, value='color:green;', other='color:red;')
should be refactored to:
>>> def style_func(v, value, other, limit=4):
... cond = v > 1 and v != limit
... return value if cond else other
>>> df.style.applymap(style_func, value='color:green;', other='color:red;')
"""
warnings.warn(
"this method is deprecated in favour of `Styler.applymap()`",
FutureWarning,
stacklevel=2,
)
if other is None:
other = ""
return self.applymap(
lambda val: value if cond(val, **kwargs) else other,
subset=subset,
)
def set_precision(self, precision: int) -> StylerRenderer:
"""
Set the precision used to display values.
.. deprecated:: 1.3.0
Parameters
----------
precision : int
Returns
-------
self : Styler
Notes
-----
This method is deprecated see `Styler.format`.
"""
warnings.warn(
"this method is deprecated in favour of `Styler.format(precision=..)`",
FutureWarning,
stacklevel=2,
)
self.precision = precision
return self.format(precision=precision, na_rep=self.na_rep)
def set_table_attributes(self, attributes: str) -> Styler:
"""
Set the table attributes added to the ``<table>`` HTML element.
These are items in addition to automatic (by default) ``id`` attribute.
Parameters
----------
attributes : str
Returns
-------
self : Styler
See Also
--------
Styler.set_table_styles: Set the table styles included within the ``<style>``
HTML element.
Styler.set_td_classes: Set the DataFrame of strings added to the ``class``
attribute of ``<td>`` HTML elements.
Examples
--------
>>> df = pd.DataFrame(np.random.randn(10, 4))
>>> df.style.set_table_attributes('class="pure-table"')
# ... <table class="pure-table"> ...
"""
self.table_attributes = attributes
return self
def export(self) -> list[tuple[Callable, tuple, dict]]:
"""
Export the styles applied to the current ``Styler``.
Can be applied to a second Styler with ``Styler.use``.
Returns
-------
styles : list
See Also
--------
Styler.use: Set the styles on the current ``Styler``.
"""
return self._todo
def use(self, styles: list[tuple[Callable, tuple, dict]]) -> Styler:
"""
Set the styles on the current ``Styler``.
Possibly uses styles from ``Styler.export``.
Parameters
----------
styles : list
List of style functions.
Returns
-------
self : Styler
See Also
--------
Styler.export : Export the styles to applied to the current ``Styler``.
"""
self._todo.extend(styles)
return self
def set_uuid(self, uuid: str) -> Styler:
"""
Set the uuid applied to ``id`` attributes of HTML elements.
Parameters
----------
uuid : str
Returns
-------
self : Styler
Notes
-----
Almost all HTML elements within the table, and including the ``<table>`` element
are assigned ``id`` attributes. The format is ``T_uuid_<extra>`` where
``<extra>`` is typically a more specific identifier, such as ``row1_col2``.
"""
self.uuid = uuid
return self
def set_caption(self, caption: str | tuple) -> Styler:
"""
Set the text added to a ``<caption>`` HTML element.
Parameters
----------
caption : str, tuple
For HTML output either the string input is used or the first element of the
tuple. For LaTeX the string input provides a caption and the additional
tuple input allows for full captions and short captions, in that order.
Returns
-------
self : Styler
"""
self.caption = caption
return self
def set_sticky(
self,
axis: Axis = 0,
pixel_size: int | None = None,
levels: list[int] | None = None,
) -> Styler:
"""
Add CSS to permanently display the index or column headers in a scrolling frame.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
Whether to make the index or column headers sticky.
pixel_size : int, optional
Required to configure the width of index cells or the height of column
header cells when sticking a MultiIndex (or with a named Index).
Defaults to 75 and 25 respectively.
levels : list of int
If ``axis`` is a MultiIndex the specific levels to stick. If ``None`` will
stick all levels.
Returns
-------
self : Styler
Notes
-----
This method uses the CSS 'position: sticky;' property to display. It is
designed to work with visible axes, therefore both:
- `styler.set_sticky(axis="index").hide_index()`
- `styler.set_sticky(axis="columns").hide_columns()`
may produce strange behaviour due to CSS controls with missing elements.
"""
if axis in [0, "index"]:
axis, obj = 0, self.data.index
pixel_size = 75 if not pixel_size else pixel_size
elif axis in [1, "columns"]:
axis, obj = 1, self.data.columns
pixel_size = 25 if not pixel_size else pixel_size
else:
raise ValueError("`axis` must be one of {0, 1, 'index', 'columns'}")
props = "position:sticky; background-color:white;"
if not isinstance(obj, pd.MultiIndex):
# handling MultiIndexes requires different CSS
if axis == 1:
# stick the first <tr> of <head> and, if index names, the second <tr>
# if self._hide_columns then no <thead><tr> here will exist: no conflict
styles: CSSStyles = [
{
"selector": "thead tr:nth-child(1) th",
"props": props + "top:0px; z-index:2;",
}
]
if not self.index.names[0] is None:
styles[0]["props"] = (
props + f"top:0px; z-index:2; height:{pixel_size}px;"
)
styles.append(
{
"selector": "thead tr:nth-child(2) th",
"props": props
+ f"top:{pixel_size}px; z-index:2; height:{pixel_size}px; ",
}
)
else:
# stick the first <th> of each <tr> in both <thead> and <tbody>
# if self._hide_index then no <th> will exist in <tbody>: no conflict
# but <th> will exist in <thead>: conflict with initial element
styles = [
{
"selector": "thead tr th:nth-child(1)",
"props": props + "left:0px; z-index:3 !important;",
},
{
"selector": "tbody tr th:nth-child(1)",
"props": props + "left:0px; z-index:1;",
},
]
else:
# handle the MultiIndex case
range_idx = list(range(obj.nlevels))
levels = sorted(levels) if levels else range_idx
if axis == 1:
styles = []
for i, level in enumerate(levels):
styles.append(
{
"selector": f"thead tr:nth-child({level+1}) th",
"props": props
+ (
f"top:{i * pixel_size}px; height:{pixel_size}px; "
"z-index:2;"
),
}
)
if not all(name is None for name in self.index.names):
styles.append(
{
"selector": f"thead tr:nth-child({obj.nlevels+1}) th",
"props": props
+ (
f"top:{(i+1) * pixel_size}px; height:{pixel_size}px; "
"z-index:2;"
),
}
)
else:
styles = []
for i, level in enumerate(levels):
props_ = props + (
f"left:{i * pixel_size}px; "
f"min-width:{pixel_size}px; "
f"max-width:{pixel_size}px; "
)
styles.extend(
[
{
"selector": f"thead tr th:nth-child({level+1})",
"props": props_ + "z-index:3 !important;",
},
{
"selector": f"tbody tr th.level{level}",
"props": props_ + "z-index:1;",
},
]
)
return self.set_table_styles(styles, overwrite=False)
def set_table_styles(
self,
table_styles: dict[Any, CSSStyles] | CSSStyles,
axis: int = 0,
overwrite: bool = True,
) -> Styler:
"""
Set the table styles included within the ``<style>`` HTML element.
This function can be used to style the entire table, columns, rows or
specific HTML selectors.
Parameters
----------
table_styles : list or dict
If supplying a list, each individual table_style should be a
dictionary with ``selector`` and ``props`` keys. ``selector``
should be a CSS selector that the style will be applied to
(automatically prefixed by the table's UUID) and ``props``
should be a list of tuples with ``(attribute, value)``.
If supplying a dict, the dict keys should correspond to
column names or index values, depending upon the specified
`axis` argument. These will be mapped to row or col CSS
selectors. MultiIndex values as dict keys should be
in their respective tuple form. The dict values should be
a list as specified in the form with CSS selectors and
props that will be applied to the specified row or column.
.. versionchanged:: 1.2.0
axis : {0 or 'index', 1 or 'columns', None}, default 0
Apply to each column (``axis=0`` or ``'index'``), to each row
(``axis=1`` or ``'columns'``). Only used if `table_styles` is
dict.
.. versionadded:: 1.2.0
overwrite : bool, default True
Styles are replaced if `True`, or extended if `False`. CSS
rules are preserved so most recent styles set will dominate
if selectors intersect.
.. versionadded:: 1.2.0
Returns
-------
self : Styler
See Also
--------
Styler.set_td_classes: Set the DataFrame of strings added to the ``class``
attribute of ``<td>`` HTML elements.
Styler.set_table_attributes: Set the table attributes added to the ``<table>``
HTML element.
Examples
--------
>>> df = pd.DataFrame(np.random.randn(10, 4),
... columns=['A', 'B', 'C', 'D'])
>>> df.style.set_table_styles(
... [{'selector': 'tr:hover',
... 'props': [('background-color', 'yellow')]}]
... )
Or with CSS strings
>>> df.style.set_table_styles(
... [{'selector': 'tr:hover',
... 'props': 'background-color: yellow; font-size: 1em;']}]
... )
Adding column styling by name
>>> df.style.set_table_styles({
... 'A': [{'selector': '',
... 'props': [('color', 'red')]}],
... 'B': [{'selector': 'td',
... 'props': 'color: blue;']}]
... }, overwrite=False)
Adding row styling
>>> df.style.set_table_styles({
... 0: [{'selector': 'td:hover',
... 'props': [('font-size', '25px')]}]
... }, axis=1, overwrite=False)
"""
if isinstance(table_styles, dict):
if axis in [0, "index"]:
obj, idf = self.data.columns, ".col"
else:
obj, idf = self.data.index, ".row"
table_styles = [
{
"selector": str(s["selector"]) + idf + str(idx),
"props": maybe_convert_css_to_tuples(s["props"]),
}
for key, styles in table_styles.items()
for idx in obj.get_indexer_for([key])
for s in styles
]
else:
table_styles = [
{
"selector": s["selector"],
"props": maybe_convert_css_to_tuples(s["props"]),
}
for s in table_styles
]
if not overwrite and self.table_styles is not None:
self.table_styles.extend(table_styles)
else:
self.table_styles = table_styles
return self
def set_na_rep(self, na_rep: str) -> StylerRenderer:
"""
Set the missing data representation on a ``Styler``.
.. versionadded:: 1.0.0
.. deprecated:: 1.3.0
Parameters
----------
na_rep : str
Returns
-------
self : Styler
Notes
-----
This method is deprecated. See `Styler.format()`
"""
warnings.warn(
"this method is deprecated in favour of `Styler.format(na_rep=..)`",
FutureWarning,
stacklevel=2,
)
self.na_rep = na_rep
return self.format(na_rep=na_rep, precision=self.precision)
def hide_index(self, subset: Subset | None = None) -> Styler:
"""
Hide the entire index, or specific keys in the index from rendering.
This method has dual functionality:
- if ``subset`` is ``None`` then the entire index will be hidden whilst
displaying all data-rows.
- if a ``subset`` is given then those specific rows will be hidden whilst the
index itself remains visible.
.. versionchanged:: 1.3.0
Parameters
----------
subset : label, array-like, IndexSlice, optional
A valid 1d input or single key along the index axis within
`DataFrame.loc[<subset>, :]`, to limit ``data`` to *before* applying
the function.
Returns
-------
self : Styler
See Also
--------
Styler.hide_columns: Hide the entire column headers row, or specific columns.
Examples
--------
Simple application hiding specific rows:
>>> df = pd.DataFrame([[1,2], [3,4], [5,6]], index=["a", "b", "c"])
>>> df.style.hide_index(["a", "b"])
0 1
c 5 6
Hide the index and retain the data values:
>>> midx = pd.MultiIndex.from_product([["x", "y"], ["a", "b", "c"]])
>>> df = pd.DataFrame(np.random.randn(6,6), index=midx, columns=midx)
>>> df.style.format("{:.1f}").hide_index()
x y
a b c a b c
0.1 0.0 0.4 1.3 0.6 -1.4
0.7 1.0 1.3 1.5 -0.0 -0.2
1.4 -0.8 1.6 -0.2 -0.4 -0.3
0.4 1.0 -0.2 -0.8 -1.2 1.1
-0.6 1.2 1.8 1.9 0.3 0.3
0.8 0.5 -0.3 1.2 2.2 -0.8
Hide specific rows but retain the index:
>>> df.style.format("{:.1f}").hide_index(subset=(slice(None), ["a", "c"]))
x y
a b c a b c
x b 0.7 1.0 1.3 1.5 -0.0 -0.2
y b -0.6 1.2 1.8 1.9 0.3 0.3
Hide specific rows and the index:
>>> df.style.format("{:.1f}").hide_index(subset=(slice(None), ["a", "c"]))
... .hide_index()
x y
a b c a b c
0.7 1.0 1.3 1.5 -0.0 -0.2
-0.6 1.2 1.8 1.9 0.3 0.3
"""
if subset is None:
self.hide_index_ = True
else:
subset_ = IndexSlice[subset, :] # new var so mypy reads not Optional
subset = non_reducing_slice(subset_)
hide = self.data.loc[subset]
hrows = self.index.get_indexer_for(hide.index)
# error: Incompatible types in assignment (expression has type
# "ndarray", variable has type "Sequence[int]")
self.hidden_rows = hrows # type: ignore[assignment]
return self
def hide_columns(self, subset: Subset | None = None) -> Styler:
"""
Hide the column headers or specific keys in the columns from rendering.
This method has dual functionality:
- if ``subset`` is ``None`` then the entire column headers row will be hidden
whilst the data-values remain visible.
- if a ``subset`` is given then those specific columns, including the
data-values will be hidden, whilst the column headers row remains visible.
.. versionchanged:: 1.3.0
Parameters
----------
subset : label, array-like, IndexSlice, optional
A valid 1d input or single key along the columns axis within
`DataFrame.loc[:, <subset>]`, to limit ``data`` to *before* applying
the function.
Returns
-------
self : Styler
See Also
--------
Styler.hide_index: Hide the entire index, or specific keys in the index.
Examples
--------
Simple application hiding specific columns:
>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "b", "c"])
>>> df.style.hide_columns(["a", "b"])
c
0 3
1 6
Hide column headers and retain the data values:
>>> midx = pd.MultiIndex.from_product([["x", "y"], ["a", "b", "c"]])
>>> df = pd.DataFrame(np.random.randn(6,6), index=midx, columns=midx)
>>> df.style.format("{:.1f}").hide_columns()
x d 0.1 0.0 0.4 1.3 0.6 -1.4
e 0.7 1.0 1.3 1.5 -0.0 -0.2
f 1.4 -0.8 1.6 -0.2 -0.4 -0.3
y d 0.4 1.0 -0.2 -0.8 -1.2 1.1
e -0.6 1.2 1.8 1.9 0.3 0.3
f 0.8 0.5 -0.3 1.2 2.2 -0.8
Hide specific columns but retain the column headers:
>>> df.style.format("{:.1f}").hide_columns(subset=(slice(None), ["a", "c"]))
x y
b b
x a 0.0 0.6
b 1.0 -0.0
c -0.8 -0.4
y a 1.0 -1.2
b 1.2 0.3
c 0.5 2.2
Hide specific columns and the column headers:
>>> df.style.format("{:.1f}").hide_columns(subset=(slice(None), ["a", "c"]))
... .hide_columns()
x a 0.0 0.6
b 1.0 -0.0
c -0.8 -0.4
y a 1.0 -1.2
b 1.2 0.3
c 0.5 2.2
"""
if subset is None:
self.hide_columns_ = True
else:
subset_ = IndexSlice[:, subset] # new var so mypy reads not Optional
subset = non_reducing_slice(subset_)
hide = self.data.loc[subset]
hcols = self.columns.get_indexer_for(hide.columns)
# error: Incompatible types in assignment (expression has type
# "ndarray", variable has type "Sequence[int]")
self.hidden_columns = hcols # type: ignore[assignment]
return self
# -----------------------------------------------------------------------
# A collection of "builtin" styles
# -----------------------------------------------------------------------
@doc(
name="background",
alt="text",
image_prefix="bg",
axis="{0 or 'index', 1 or 'columns', None}",
text_threshold="",
)
def background_gradient(
self,
cmap="PuBu",
low: float = 0,
high: float = 0,
axis: Axis | None = 0,
subset: Subset | None = None,
text_color_threshold: float = 0.408,
vmin: float | None = None,
vmax: float | None = None,
gmap: Sequence | None = None,
) -> Styler:
"""
Color the {name} in a gradient style.
The {name} color is determined according
to the data in each column, row or frame, or by a given
gradient map. Requires matplotlib.
Parameters
----------
cmap : str or colormap
Matplotlib colormap.
low : float
Compress the color range at the low end. This is a multiple of the data
range to extend below the minimum; good values usually in [0, 1],
defaults to 0.
high : float
Compress the color range at the high end. This is a multiple of the data
range to extend above the maximum; good values usually in [0, 1],
defaults to 0.
axis : {axis}, default 0
Apply to each column (``axis=0`` or ``'index'``), to each row
(``axis=1`` or ``'columns'``), or to the entire DataFrame at once
with ``axis=None``.
subset : label, array-like, IndexSlice, optional
A valid 2d input to `DataFrame.loc[<subset>]`, or, in the case of a 1d input
or single key, to `DataFrame.loc[:, <subset>]` where the columns are
prioritised, to limit ``data`` to *before* applying the function.
text_color_threshold : float or int
{text_threshold}
Luminance threshold for determining text color in [0, 1]. Facilitates text
visibility across varying background colors. All text is dark if 0, and
light if 1, defaults to 0.408.
vmin : float, optional
Minimum data value that corresponds to colormap minimum value.
If not specified the minimum value of the data (or gmap) will be used.
.. versionadded:: 1.0.0
vmax : float, optional
Maximum data value that corresponds to colormap maximum value.
If not specified the maximum value of the data (or gmap) will be used.
.. versionadded:: 1.0.0
gmap : array-like, optional
Gradient map for determining the {name} colors. If not supplied
will use the underlying data from rows, columns or frame. If given as an
ndarray or list-like must be an identical shape to the underlying data
considering ``axis`` and ``subset``. If given as DataFrame or Series must
have same index and column labels considering ``axis`` and ``subset``.
If supplied, ``vmin`` and ``vmax`` should be given relative to this
gradient map.
.. versionadded:: 1.3.0
Returns
-------
self : Styler
See Also
--------
Styler.{alt}_gradient: Color the {alt} in a gradient style.
Notes
-----
When using ``low`` and ``high`` the range
of the gradient, given by the data if ``gmap`` is not given or by ``gmap``,
is extended at the low end effectively by
`map.min - low * map.range` and at the high end by
`map.max + high * map.range` before the colors are normalized and determined.
If combining with ``vmin`` and ``vmax`` the `map.min`, `map.max` and
`map.range` are replaced by values according to the values derived from
``vmin`` and ``vmax``.
This method will preselect numeric columns and ignore non-numeric columns
unless a ``gmap`` is supplied in which case no preselection occurs.
Examples
--------
>>> df = pd.DataFrame(columns=["City", "Temp (c)", "Rain (mm)", "Wind (m/s)"],
... data=[["Stockholm", 21.6, 5.0, 3.2],
... ["Oslo", 22.4, 13.3, 3.1],
... ["Copenhagen", 24.5, 0.0, 6.7]])
Shading the values column-wise, with ``axis=0``, preselecting numeric columns
>>> df.style.{name}_gradient(axis=0)
.. figure:: ../../_static/style/{image_prefix}_ax0.png
Shading all values collectively using ``axis=None``
>>> df.style.{name}_gradient(axis=None)
.. figure:: ../../_static/style/{image_prefix}_axNone.png
Compress the color map from the both ``low`` and ``high`` ends
>>> df.style.{name}_gradient(axis=None, low=0.75, high=1.0)
.. figure:: ../../_static/style/{image_prefix}_axNone_lowhigh.png
Manually setting ``vmin`` and ``vmax`` gradient thresholds
>>> df.style.{name}_gradient(axis=None, vmin=6.7, vmax=21.6)
.. figure:: ../../_static/style/{image_prefix}_axNone_vminvmax.png
Setting a ``gmap`` and applying to all columns with another ``cmap``
>>> df.style.{name}_gradient(axis=0, gmap=df['Temp (c)'], cmap='YlOrRd')
.. figure:: ../../_static/style/{image_prefix}_gmap.png
Setting the gradient map for a dataframe (i.e. ``axis=None``), we need to
explicitly state ``subset`` to match the ``gmap`` shape
>>> gmap = np.array([[1,2,3], [2,3,4], [3,4,5]])
>>> df.style.{name}_gradient(axis=None, gmap=gmap,
... cmap='YlOrRd', subset=['Temp (c)', 'Rain (mm)', 'Wind (m/s)']
... )
.. figure:: ../../_static/style/{image_prefix}_axNone_gmap.png
"""
if subset is None and gmap is None:
subset = self.data.select_dtypes(include=np.number).columns
self.apply(
_background_gradient,
cmap=cmap,
subset=subset,
axis=axis,
low=low,
high=high,
text_color_threshold=text_color_threshold,
vmin=vmin,
vmax=vmax,
gmap=gmap,
)
return self
@doc(
background_gradient,
name="text",
alt="background",
image_prefix="tg",
axis="{0 or 'index', 1 or 'columns', None}",
text_threshold="This argument is ignored (only used in `background_gradient`).",
)
def text_gradient(
self,
cmap="PuBu",
low: float = 0,
high: float = 0,
axis: Axis | None = 0,
subset: Subset | None = None,
vmin: float | None = None,
vmax: float | None = None,
gmap: Sequence | None = None,
) -> Styler:
if subset is None and gmap is None:
subset = self.data.select_dtypes(include=np.number).columns
return self.apply(
_background_gradient,
cmap=cmap,
subset=subset,
axis=axis,
low=low,
high=high,
vmin=vmin,
vmax=vmax,
gmap=gmap,
text_only=True,
)
def set_properties(self, subset: Subset | None = None, **kwargs) -> Styler:
"""
Set defined CSS-properties to each ``<td>`` HTML element within the given
subset.
Parameters
----------
subset : label, array-like, IndexSlice, optional
A valid 2d input to `DataFrame.loc[<subset>]`, or, in the case of a 1d input
or single key, to `DataFrame.loc[:, <subset>]` where the columns are
prioritised, to limit ``data`` to *before* applying the function.
**kwargs : dict
A dictionary of property, value pairs to be set for each cell.
Returns
-------
self : Styler
Notes
-----
This is a convenience methods which wraps the :meth:`Styler.applymap` calling a
function returning the CSS-properties independently of the data.
Examples
--------
>>> df = pd.DataFrame(np.random.randn(10, 4))
>>> df.style.set_properties(color="white", align="right")
>>> df.style.set_properties(**{'background-color': 'yellow'})
"""
values = "".join(f"{p}: {v};" for p, v in kwargs.items())
return self.applymap(lambda x: values, subset=subset)
@staticmethod
def _bar(
s,
align: str,
colors: list[str],
width: float = 100,
vmin: float | None = None,
vmax: float | None = None,
):
"""
Draw bar chart in dataframe cells.
"""
# Get input value range.
smin = np.nanmin(s.to_numpy()) if vmin is None else vmin
smax = np.nanmax(s.to_numpy()) if vmax is None else vmax
if align == "mid":
smin = min(0, smin)
smax = max(0, smax)
elif align == "zero":
# For "zero" mode, we want the range to be symmetrical around zero.
smax = max(abs(smin), abs(smax))
smin = -smax
# Transform to percent-range of linear-gradient
normed = width * (s.to_numpy(dtype=float) - smin) / (smax - smin + 1e-12)
zero = -width * smin / (smax - smin + 1e-12)
def css_bar(start: float, end: float, color: str) -> str:
"""
Generate CSS code to draw a bar from start to end.
"""
css = "width: 10em; height: 80%;"
if end > start:
css += "background: linear-gradient(90deg,"
if start > 0:
css += f" transparent {start:.1f}%, {color} {start:.1f}%, "
e = min(end, width)
css += f"{color} {e:.1f}%, transparent {e:.1f}%)"
return css
def css(x):
if pd.isna(x):
return ""
# avoid deprecated indexing `colors[x > zero]`
color = colors[1] if x > zero else colors[0]
if align == "left":
return css_bar(0, x, color)
else:
return css_bar(min(x, zero), max(x, zero), color)
if s.ndim == 1:
return [css(x) for x in normed]
else:
return DataFrame(
[[css(x) for x in row] for row in normed],
index=s.index,
columns=s.columns,
)
def bar(
self,
subset: Subset | None = None,
axis: Axis | None = 0,
color="#d65f5f",
width: float = 100,
align: str = "left",
vmin: float | None = None,
vmax: float | None = None,
) -> Styler:
"""
Draw bar chart in the cell backgrounds.
Parameters
----------
subset : label, array-like, IndexSlice, optional
A valid 2d input to `DataFrame.loc[<subset>]`, or, in the case of a 1d input
or single key, to `DataFrame.loc[:, <subset>]` where the columns are
prioritised, to limit ``data`` to *before* applying the function.
axis : {0 or 'index', 1 or 'columns', None}, default 0
Apply to each column (``axis=0`` or ``'index'``), to each row
(``axis=1`` or ``'columns'``), or to the entire DataFrame at once
with ``axis=None``.
color : str or 2-tuple/list
If a str is passed, the color is the same for both
negative and positive numbers. If 2-tuple/list is used, the
first element is the color_negative and the second is the
color_positive (eg: ['#d65f5f', '#5fba7d']).
width : float, default 100
A number between 0 or 100. The largest value will cover `width`
percent of the cell's width.
align : {'left', 'zero',' mid'}, default 'left'
How to align the bars with the cells.
- 'left' : the min value starts at the left of the cell.
- 'zero' : a value of zero is located at the center of the cell.
- 'mid' : the center of the cell is at (max-min)/2, or
if values are all negative (positive) the zero is aligned
at the right (left) of the cell.
vmin : float, optional
Minimum bar value, defining the left hand limit
of the bar drawing range, lower values are clipped to `vmin`.
When None (default): the minimum value of the data will be used.
vmax : float, optional
Maximum bar value, defining the right hand limit
of the bar drawing range, higher values are clipped to `vmax`.
When None (default): the maximum value of the data will be used.
Returns
-------
self : Styler
"""
if align not in ("left", "zero", "mid"):
raise ValueError("`align` must be one of {'left', 'zero',' mid'}")
if not (is_list_like(color)):
color = [color, color]
elif len(color) == 1:
color = [color[0], color[0]]
elif len(color) > 2:
raise ValueError(
"`color` must be string or a list-like "
"of length 2: [`color_neg`, `color_pos`] "
"(eg: color=['#d65f5f', '#5fba7d'])"
)
if subset is None:
subset = self.data.select_dtypes(include=np.number).columns
self.apply(
self._bar,
subset=subset,
axis=axis,
align=align,
colors=color,
width=width,
vmin=vmin,
vmax=vmax,
)
return self
def highlight_null(
self,
null_color: str = "red",
subset: Subset | None = None,
props: str | None = None,
) -> Styler:
"""
Highlight missing values with a style.
Parameters
----------
null_color : str, default 'red'
subset : label, array-like, IndexSlice, optional
A valid 2d input to `DataFrame.loc[<subset>]`, or, in the case of a 1d input
or single key, to `DataFrame.loc[:, <subset>]` where the columns are
prioritised, to limit ``data`` to *before* applying the function.
.. versionadded:: 1.1.0
props : str, default None
CSS properties to use for highlighting. If ``props`` is given, ``color``
is not used.
.. versionadded:: 1.3.0
Returns
-------
self : Styler
See Also
--------
Styler.highlight_max: Highlight the maximum with a style.
Styler.highlight_min: Highlight the minimum with a style.
Styler.highlight_between: Highlight a defined range with a style.
Styler.highlight_quantile: Highlight values defined by a quantile with a style.
"""
def f(data: DataFrame, props: str) -> np.ndarray:
return np.where(pd.isna(data).to_numpy(), props, "")
if props is None:
props = f"background-color: {null_color};"
# error: Argument 1 to "apply" of "Styler" has incompatible type
# "Callable[[DataFrame, str], ndarray]"; expected "Callable[..., Styler]"
return self.apply(
f, axis=None, subset=subset, props=props # type: ignore[arg-type]
)
def highlight_max(
self,
subset: Subset | None = None,
color: str = "yellow",
axis: Axis | None = 0,
props: str | None = None,
) -> Styler:
"""
Highlight the maximum with a style.
Parameters
----------
subset : label, array-like, IndexSlice, optional
A valid 2d input to `DataFrame.loc[<subset>]`, or, in the case of a 1d input
or single key, to `DataFrame.loc[:, <subset>]` where the columns are
prioritised, to limit ``data`` to *before* applying the function.
color : str, default 'yellow'
Background color to use for highlighting.
axis : {0 or 'index', 1 or 'columns', None}, default 0
Apply to each column (``axis=0`` or ``'index'``), to each row
(``axis=1`` or ``'columns'``), or to the entire DataFrame at once
with ``axis=None``.
props : str, default None
CSS properties to use for highlighting. If ``props`` is given, ``color``
is not used.
.. versionadded:: 1.3.0
Returns
-------
self : Styler
See Also
--------
Styler.highlight_null: Highlight missing values with a style.
Styler.highlight_min: Highlight the minimum with a style.
Styler.highlight_between: Highlight a defined range with a style.
Styler.highlight_quantile: Highlight values defined by a quantile with a style.
"""
if props is None:
props = f"background-color: {color};"
# error: Argument 1 to "apply" of "Styler" has incompatible type
# "Callable[[FrameOrSeries, str], ndarray]"; expected "Callable[..., Styler]"
return self.apply(
partial(_highlight_value, op="max"), # type: ignore[arg-type]
axis=axis,
subset=subset,
props=props,
)
def highlight_min(
self,
subset: Subset | None = None,
color: str = "yellow",
axis: Axis | None = 0,
props: str | None = None,
) -> Styler:
"""
Highlight the minimum with a style.
Parameters
----------
subset : label, array-like, IndexSlice, optional
A valid 2d input to `DataFrame.loc[<subset>]`, or, in the case of a 1d input
or single key, to `DataFrame.loc[:, <subset>]` where the columns are
prioritised, to limit ``data`` to *before* applying the function.
color : str, default 'yellow'
Background color to use for highlighting.
axis : {0 or 'index', 1 or 'columns', None}, default 0
Apply to each column (``axis=0`` or ``'index'``), to each row
(``axis=1`` or ``'columns'``), or to the entire DataFrame at once
with ``axis=None``.
props : str, default None
CSS properties to use for highlighting. If ``props`` is given, ``color``
is not used.
.. versionadded:: 1.3.0
Returns
-------
self : Styler
See Also
--------
Styler.highlight_null: Highlight missing values with a style.
Styler.highlight_max: Highlight the maximum with a style.
Styler.highlight_between: Highlight a defined range with a style.
Styler.highlight_quantile: Highlight values defined by a quantile with a style.
"""
if props is None:
props = f"background-color: {color};"
# error: Argument 1 to "apply" of "Styler" has incompatible type
# "Callable[[FrameOrSeries, str], ndarray]"; expected "Callable[..., Styler]"
return self.apply(
partial(_highlight_value, op="min"), # type: ignore[arg-type]
axis=axis,
subset=subset,
props=props,
)
def highlight_between(
self,
subset: Subset | None = None,
color: str = "yellow",
axis: Axis | None = 0,
left: Scalar | Sequence | None = None,
right: Scalar | Sequence | None = None,
inclusive: str = "both",
props: str | None = None,
) -> Styler:
"""
Highlight a defined range with a style.
.. versionadded:: 1.3.0
Parameters
----------
subset : label, array-like, IndexSlice, optional
A valid 2d input to `DataFrame.loc[<subset>]`, or, in the case of a 1d input
or single key, to `DataFrame.loc[:, <subset>]` where the columns are
prioritised, to limit ``data`` to *before* applying the function.
color : str, default 'yellow'
Background color to use for highlighting.
axis : {0 or 'index', 1 or 'columns', None}, default 0
If ``left`` or ``right`` given as sequence, axis along which to apply those
boundaries. See examples.
left : scalar or datetime-like, or sequence or array-like, default None
Left bound for defining the range.
right : scalar or datetime-like, or sequence or array-like, default None
Right bound for defining the range.
inclusive : {'both', 'neither', 'left', 'right'}
Identify whether bounds are closed or open.
props : str, default None
CSS properties to use for highlighting. If ``props`` is given, ``color``
is not used.
Returns
-------
self : Styler
See Also
--------
Styler.highlight_null: Highlight missing values with a style.
Styler.highlight_max: Highlight the maximum with a style.
Styler.highlight_min: Highlight the minimum with a style.
Styler.highlight_quantile: Highlight values defined by a quantile with a style.
Notes
-----
If ``left`` is ``None`` only the right bound is applied.
If ``right`` is ``None`` only the left bound is applied. If both are ``None``
all values are highlighted.
``axis`` is only needed if ``left`` or ``right`` are provided as a sequence or
an array-like object for aligning the shapes. If ``left`` and ``right`` are
both scalars then all ``axis`` inputs will give the same result.
This function only works with compatible ``dtypes``. For example a datetime-like
region can only use equivalent datetime-like ``left`` and ``right`` arguments.
Use ``subset`` to control regions which have multiple ``dtypes``.
Examples
--------
Basic usage
>>> df = pd.DataFrame({
... 'One': [1.2, 1.6, 1.5],
... 'Two': [2.9, 2.1, 2.5],
... 'Three': [3.1, 3.2, 3.8],
... })
>>> df.style.highlight_between(left=2.1, right=2.9)
.. figure:: ../../_static/style/hbetw_basic.png
Using a range input sequnce along an ``axis``, in this case setting a ``left``
and ``right`` for each column individually
>>> df.style.highlight_between(left=[1.4, 2.4, 3.4], right=[1.6, 2.6, 3.6],
... axis=1, color="#fffd75")
.. figure:: ../../_static/style/hbetw_seq.png
Using ``axis=None`` and providing the ``left`` argument as an array that
matches the input DataFrame, with a constant ``right``
>>> df.style.highlight_between(left=[[2,2,3],[2,2,3],[3,3,3]], right=3.5,
... axis=None, color="#fffd75")
.. figure:: ../../_static/style/hbetw_axNone.png
Using ``props`` instead of default background coloring
>>> df.style.highlight_between(left=1.5, right=3.5,
... props='font-weight:bold;color:#e83e8c')
.. figure:: ../../_static/style/hbetw_props.png
"""
if props is None:
props = f"background-color: {color};"
return self.apply(
_highlight_between, # type: ignore[arg-type]
axis=axis,
subset=subset,
props=props,
left=left,
right=right,
inclusive=inclusive,
)
def highlight_quantile(
self,
subset: Subset | None = None,
color: str = "yellow",
axis: Axis | None = 0,
q_left: float = 0.0,
q_right: float = 1.0,
interpolation: str = "linear",
inclusive: str = "both",
props: str | None = None,
) -> Styler:
"""
Highlight values defined by a quantile with a style.
.. versionadded:: 1.3.0
Parameters
----------
subset : label, array-like, IndexSlice, optional
A valid 2d input to `DataFrame.loc[<subset>]`, or, in the case of a 1d input
or single key, to `DataFrame.loc[:, <subset>]` where the columns are
prioritised, to limit ``data`` to *before* applying the function.
color : str, default 'yellow'
Background color to use for highlighting
axis : {0 or 'index', 1 or 'columns', None}, default 0
Axis along which to determine and highlight quantiles. If ``None`` quantiles
are measured over the entire DataFrame. See examples.
q_left : float, default 0
Left bound, in [0, q_right), for the target quantile range.
q_right : float, default 1
Right bound, in (q_left, 1], for the target quantile range.
interpolation : {linear, lower, higher, midpoint, nearest}
Argument passed to ``Series.quantile`` or ``DataFrame.quantile`` for
quantile estimation.
inclusive : {'both', 'neither', 'left', 'right'}
Identify whether quantile bounds are closed or open.
props : str, default None
CSS properties to use for highlighting. If ``props`` is given, ``color``
is not used.
Returns
-------
self : Styler
See Also
--------
Styler.highlight_null: Highlight missing values with a style.
Styler.highlight_max: Highlight the maximum with a style.
Styler.highlight_min: Highlight the minimum with a style.
Styler.highlight_between: Highlight a defined range with a style.
Notes
-----
This function does not work with ``str`` dtypes.
Examples
--------
Using ``axis=None`` and apply a quantile to all collective data
>>> df = pd.DataFrame(np.arange(10).reshape(2,5) + 1)
>>> df.style.highlight_quantile(axis=None, q_left=0.8, color="#fffd75")
.. figure:: ../../_static/style/hq_axNone.png
Or highlight quantiles row-wise or column-wise, in this case by row-wise
>>> df.style.highlight_quantile(axis=1, q_left=0.8, color="#fffd75")
.. figure:: ../../_static/style/hq_ax1.png
Use ``props`` instead of default background coloring
>>> df.style.highlight_quantile(axis=None, q_left=0.2, q_right=0.8,
... props='font-weight:bold;color:#e83e8c')
.. figure:: ../../_static/style/hq_props.png
"""
subset_ = slice(None) if subset is None else subset
subset_ = non_reducing_slice(subset_)
data = self.data.loc[subset_]
# after quantile is found along axis, e.g. along rows,
# applying the calculated quantile to alternate axis, e.g. to each column
kwargs = {"q": [q_left, q_right], "interpolation": interpolation}
if axis in [0, "index"]:
q = data.quantile(axis=axis, numeric_only=False, **kwargs)
axis_apply: int | None = 1
elif axis in [1, "columns"]:
q = data.quantile(axis=axis, numeric_only=False, **kwargs)
axis_apply = 0
else: # axis is None
q = Series(data.to_numpy().ravel()).quantile(**kwargs)
axis_apply = None
if props is None:
props = f"background-color: {color};"
return self.apply(
_highlight_between, # type: ignore[arg-type]
axis=axis_apply,
subset=subset,
props=props,
left=q.iloc[0],
right=q.iloc[1],
inclusive=inclusive,
)
@classmethod
def from_custom_template(
cls, searchpath, html_table: str | None = None, html_style: str | None = None
):
"""
Factory function for creating a subclass of ``Styler``.
Uses custom templates and Jinja environment.
.. versionchanged:: 1.3.0
Parameters
----------
searchpath : str or list
Path or paths of directories containing the templates.
html_table : str
Name of your custom template to replace the html_table template.
.. versionadded:: 1.3.0
html_style : str
Name of your custom template to replace the html_style template.
.. versionadded:: 1.3.0
Returns
-------
MyStyler : subclass of Styler
Has the correct ``env``,``template_html``, ``template_html_table`` and
``template_html_style`` class attributes set.
"""
loader = jinja2.ChoiceLoader([jinja2.FileSystemLoader(searchpath), cls.loader])
# mypy doesn't like dynamically-defined classes
# error: Variable "cls" is not valid as a type
# error: Invalid base class "cls"
class MyStyler(cls): # type:ignore[valid-type,misc]
env = jinja2.Environment(loader=loader)
if html_table:
template_html_table = env.get_template(html_table)
if html_style:
template_html_style = env.get_template(html_style)
return MyStyler
def pipe(self, func: Callable, *args, **kwargs):
"""
Apply ``func(self, *args, **kwargs)``, and return the result.
Parameters
----------
func : function
Function to apply to the Styler. Alternatively, a
``(callable, keyword)`` tuple where ``keyword`` is a string
indicating the keyword of ``callable`` that expects the Styler.
*args : optional
Arguments passed to `func`.
**kwargs : optional
A dictionary of keyword arguments passed into ``func``.
Returns
-------
object :
The value returned by ``func``.
See Also
--------
DataFrame.pipe : Analogous method for DataFrame.
Styler.apply : Apply a CSS-styling function column-wise, row-wise, or
table-wise.
Notes
-----
Like :meth:`DataFrame.pipe`, this method can simplify the
application of several user-defined functions to a styler. Instead
of writing:
.. code-block:: python
f(g(df.style.set_precision(3), arg1=a), arg2=b, arg3=c)
users can write:
.. code-block:: python
(df.style.set_precision(3)
.pipe(g, arg1=a)
.pipe(f, arg2=b, arg3=c))
In particular, this allows users to define functions that take a
styler object, along with other parameters, and return the styler after
making styling changes (such as calling :meth:`Styler.apply` or
:meth:`Styler.set_properties`). Using ``.pipe``, these user-defined
style "transformations" can be interleaved with calls to the built-in
Styler interface.
Examples
--------
>>> def format_conversion(styler):
... return (styler.set_properties(**{'text-align': 'right'})
... .format({'conversion': '{:.1%}'}))
The user-defined ``format_conversion`` function above can be called
within a sequence of other style modifications:
>>> df = pd.DataFrame({'trial': list(range(5)),
... 'conversion': [0.75, 0.85, np.nan, 0.7, 0.72]})
>>> (df.style
... .highlight_min(subset=['conversion'], color='yellow')
... .pipe(format_conversion)
... .set_caption("Results with minimum conversion highlighted."))
"""
return com.pipe(self, func, *args, **kwargs)
def _validate_apply_axis_arg(
arg: FrameOrSeries | Sequence | np.ndarray,
arg_name: str,
dtype: Any | None,
data: FrameOrSeries,
) -> np.ndarray:
"""
For the apply-type methods, ``axis=None`` creates ``data`` as DataFrame, and for
``axis=[1,0]`` it creates a Series. Where ``arg`` is expected as an element
of some operator with ``data`` we must make sure that the two are compatible shapes,
or raise.
Parameters
----------
arg : sequence, Series or DataFrame
the user input arg
arg_name : string
name of the arg for use in error messages
dtype : numpy dtype, optional
forced numpy dtype if given
data : Series or DataFrame
underling subset of Styler data on which operations are performed
Returns
-------
ndarray
"""
dtype = {"dtype": dtype} if dtype else {}
# raise if input is wrong for axis:
if isinstance(arg, Series) and isinstance(data, DataFrame):
raise ValueError(
f"'{arg_name}' is a Series but underlying data for operations "
f"is a DataFrame since 'axis=None'"
)
elif isinstance(arg, DataFrame) and isinstance(data, Series):
raise ValueError(
f"'{arg_name}' is a DataFrame but underlying data for "
f"operations is a Series with 'axis in [0,1]'"
)
elif isinstance(arg, (Series, DataFrame)): # align indx / cols to data
arg = arg.reindex_like(data, method=None).to_numpy(**dtype)
else:
arg = np.asarray(arg, **dtype)
assert isinstance(arg, np.ndarray) # mypy requirement
if arg.shape != data.shape: # check valid input
raise ValueError(
f"supplied '{arg_name}' is not correct shape for data over "
f"selected 'axis': got {arg.shape}, "
f"expected {data.shape}"
)
return arg
def _background_gradient(
data,
cmap="PuBu",
low: float = 0,
high: float = 0,
text_color_threshold: float = 0.408,
vmin: float | None = None,
vmax: float | None = None,
gmap: Sequence | np.ndarray | FrameOrSeries | None = None,
text_only: bool = False,
):
"""
Color background in a range according to the data or a gradient map
"""
if gmap is None: # the data is used the gmap
gmap = data.to_numpy(dtype=float)
else: # else validate gmap against the underlying data
gmap = _validate_apply_axis_arg(gmap, "gmap", float, data)
with _mpl(Styler.background_gradient) as (plt, colors):
smin = np.nanmin(gmap) if vmin is None else vmin
smax = np.nanmax(gmap) if vmax is None else vmax
rng = smax - smin
# extend lower / upper bounds, compresses color range
norm = colors.Normalize(smin - (rng * low), smax + (rng * high))
rgbas = plt.cm.get_cmap(cmap)(norm(gmap))
def relative_luminance(rgba) -> float:
"""
Calculate relative luminance of a color.
The calculation adheres to the W3C standards
(https://www.w3.org/WAI/GL/wiki/Relative_luminance)
Parameters
----------
color : rgb or rgba tuple
Returns
-------
float
The relative luminance as a value from 0 to 1
"""
r, g, b = (
x / 12.92 if x <= 0.04045 else ((x + 0.055) / 1.055) ** 2.4
for x in rgba[:3]
)
return 0.2126 * r + 0.7152 * g + 0.0722 * b
def css(rgba, text_only) -> str:
if not text_only:
dark = relative_luminance(rgba) < text_color_threshold
text_color = "#f1f1f1" if dark else "#000000"
return f"background-color: {colors.rgb2hex(rgba)};color: {text_color};"
else:
return f"color: {colors.rgb2hex(rgba)};"
if data.ndim == 1:
return [css(rgba, text_only) for rgba in rgbas]
else:
return DataFrame(
[[css(rgba, text_only) for rgba in row] for row in rgbas],
index=data.index,
columns=data.columns,
)
def _highlight_between(
data: FrameOrSeries,
props: str,
left: Scalar | Sequence | np.ndarray | FrameOrSeries | None = None,
right: Scalar | Sequence | np.ndarray | FrameOrSeries | None = None,
inclusive: bool | str = True,
) -> np.ndarray:
"""
Return an array of css props based on condition of data values within given range.
"""
if np.iterable(left) and not isinstance(left, str):
left = _validate_apply_axis_arg(
left, "left", None, data # type: ignore[arg-type]
)
if np.iterable(right) and not isinstance(right, str):
right = _validate_apply_axis_arg(
right, "right", None, data # type: ignore[arg-type]
)
# get ops with correct boundary attribution
if inclusive == "both":
ops = (operator.ge, operator.le)
elif inclusive == "neither":
ops = (operator.gt, operator.lt)
elif inclusive == "left":
ops = (operator.ge, operator.lt)
elif inclusive == "right":
ops = (operator.gt, operator.le)
else:
raise ValueError(
f"'inclusive' values can be 'both', 'left', 'right', or 'neither' "
f"got {inclusive}"
)
g_left = (
ops[0](data, left)
if left is not None
else np.full(data.shape, True, dtype=bool)
)
l_right = (
ops[1](data, right)
if right is not None
else np.full(data.shape, True, dtype=bool)
)
return np.where(g_left & l_right, props, "")
def _highlight_value(data: FrameOrSeries, op: str, props: str) -> np.ndarray:
"""
Return an array of css strings based on the condition of values matching an op.
"""
value = getattr(data, op)(skipna=True)
if isinstance(data, DataFrame): # min/max must be done twice to return scalar
value = getattr(value, op)(skipna=True)
return np.where(data == value, props, "")