School/.venv/lib/python3.9/site-packages/pandas/_libs/window/aggregations.pyi
Kristofers Solo 1e065cc4b2 Updated .venv
2021-11-22 17:11:45 +02:00

113 lines
3.7 KiB
Python

from typing import (
Any,
Callable,
Literal,
)
import numpy as np
def roll_sum(
values: np.ndarray, # const float64_t[:]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
) -> np.ndarray: ... # np.ndarray[float]
def roll_mean(
values: np.ndarray, # const float64_t[:]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
) -> np.ndarray: ... # np.ndarray[float]
def roll_var(
values: np.ndarray, # const float64_t[:]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
ddof: int = ...,
) -> np.ndarray: ... # np.ndarray[float]
def roll_skew(
values: np.ndarray, # np.ndarray[np.float64]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
) -> np.ndarray: ... # np.ndarray[float]
def roll_kurt(
values: np.ndarray, # np.ndarray[np.float64]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
) -> np.ndarray: ... # np.ndarray[float]
def roll_median_c(
values: np.ndarray, # np.ndarray[np.float64]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
) -> np.ndarray: ... # np.ndarray[float]
def roll_max(
values: np.ndarray, # np.ndarray[np.float64]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
) -> np.ndarray: ... # np.ndarray[float]
def roll_min(
values: np.ndarray, # np.ndarray[np.float64]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
) -> np.ndarray: ... # np.ndarray[float]
def roll_quantile(
values: np.ndarray, # const float64_t[:]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
quantile: float, # float64_t
interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
) -> np.ndarray: ... # np.ndarray[float]
def roll_apply(
obj: object,
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
function: Callable[..., Any],
raw: bool,
args: tuple[Any, ...],
kwargs: dict[str, Any],
) -> np.ndarray: ... # np.ndarray[float] # FIXME: could also be type(obj) if n==0
def roll_weighted_sum(
values: np.ndarray, # const float64_t[:]
weights: np.ndarray, # const float64_t[:]
minp: int,
) -> np.ndarray: ... # np.ndarray[np.float64]
def roll_weighted_mean(
values: np.ndarray, # const float64_t[:]
weights: np.ndarray, # const float64_t[:]
minp: int,
) -> np.ndarray: ... # np.ndarray[np.float64]
def roll_weighted_var(
values: np.ndarray, # const float64_t[:]
weights: np.ndarray, # const float64_t[:]
minp: int, # int64_t
ddof: int, # unsigned int
) -> np.ndarray: ... # np.ndarray[np.float64]
def ewma(
vals: np.ndarray, # const float64_t[:]
start: np.ndarray, # const int64_t[:]
end: np.ndarray, # const int64_t[:]
minp: int,
com: float, # float64_t
adjust: bool,
ignore_na: bool,
deltas: np.ndarray, # const float64_t[:]
) -> np.ndarray: ... # np.ndarray[np.float64]
def ewmcov(
input_x: np.ndarray, # const float64_t[:]
start: np.ndarray, # const int64_t[:]
end: np.ndarray, # const int64_t[:]
minp: int,
input_y: np.ndarray, # const float64_t[:]
com: float, # float64_t
adjust: bool,
ignore_na: bool,
bias: bool,
) -> np.ndarray: ... # np.ndarray[np.float64]