# Author - Kristiāns Francis Cagulis # Date - 17.02.2022 # Title - Patstāvīgais darbs "SS.com scraping" from bs4 import BeautifulSoup import requests import pandas as pd from datetime import datetime HEADERS = { "User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.97 Safari/537.36 Vivaldi/4.1.2369.21' } class SS: def __init__(self, url, name): self.url = url self.name = name def _get_page_amount(self): page = requests.get(self.url, headers=HEADERS) soup = BeautifulSoup(page.content, 'html.parser') try: last_url = soup.find(class_='td2').findChild('a')['href'] page_amount = last_url[last_url.find("page") + 4:last_url.find(".html")] except: page_amount = 1 print(f"Page amount = {page_amount}") return int(page_amount) def get_data(self): items = [] item_no = 1 for page_number in range(1, self._get_page_amount() + 1): url = self.url + f"/page{page_number}.html" page = requests.get(url, headers=HEADERS) soup = BeautifulSoup(page.content, 'html.parser') # item ids ids = [tag['id'] for tag in soup.select('tr[id]')] # creates list with ids ids = [x for x in ids if "tr_bnr" not in x] # removes "tr_bnr" elements from list ids.remove("head_line") # removes first "head_line" id print(f"Page {page_number}") # getting item data for id in soup.find_all(id=ids): print(f"Item {item_no}") item_no += 1 for elem in id.find_all(class_='msga2-o pp6'): items.append(elem.get_text()) if len(id.find_all(class_='msga2-o pp6')) == 7: del items[-2] # adverts url item_url = id.findChild(class_='msg2').findChild('div').findChild('a')['href'] # gets url item_url = "https://www.ss.com" + item_url item_page = requests.get(item_url, headers=HEADERS) item_soup = BeautifulSoup(item_page.content, 'html.parser') # adverts full text item_text = item_soup.find(id='msg_div_msg').get_text() # gets full text item_text = item_text[:item_text.find("Pilsēta:")] # removes text last part (table) items.append(item_text) # adverts publication date item_date = item_soup.find_all('td', class_='msg_footer') # gets all 'msg_footer' class' item_date = item_date[2].get_text() # extracts 3rd element items.append(item_date[8:18]) # crops date chunk_size = 8 chunked_items_list = [items[i:i + chunk_size] for i in range(0, len(items), chunk_size)] # combines each 'chunk_size' elements into array columns = ["Atrašanās vieta", "Istabu skaits", "Kvadratūra", "Stāvs", "Sērija", "Cena", "Pilns sludinājuma teksts", "Izvietošanas datums"] df = pd.DataFrame(chunked_items_list, columns=columns) time = datetime.now().strftime("%d%m%Y%H%M%S") df.to_excel(excel_writer=f"output/excel/output_{self.name}_{time}.xlsx", index=False) print("Done") flats_many = SS("https://www.ss.com/lv/real-estate/flats/riga/all/sell/", "many") flats_few = SS("https://www.ss.com/lv/real-estate/flats/riga-region/all/sell/", "few") flats_aizkraukle = SS("https://www.ss.com/lv/real-estate/flats/aizkraukle-and-reg/sell/", "aizkraukle") flats_tukums = SS("https://www.ss.com/lv/real-estate/flats/tukums-and-reg/sell/", "tukums") flats_ogre = SS("https://www.ss.com/lv/real-estate/flats/ogre-and-reg/sell/", "ogre") def main(): # flats_aizkraukle.get_data() # flats_tukums.get_data() # flats_ogre.get_data() # flats_few.get_data() flats_many.get_data() if __name__ == '__main__': main()