mirror of
https://github.com/kristoferssolo/School.git
synced 2025-10-21 20:10:38 +00:00
Classwork 190122
This commit is contained in:
parent
a4c68eeda4
commit
cbb0892399
6
january/task_050122/main_vs_module_A_Bisenieks.py
Normal file
6
january/task_050122/main_vs_module_A_Bisenieks.py
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
import pandas
|
||||||
|
|
||||||
|
dati = pandas.read_csv('auto_imports_mainits.csv')
|
||||||
|
|
||||||
|
for index, element in enumerate(dati.isnull().sum()):
|
||||||
|
if element != 0: print(f"| {dati.columns[index]}" + " " * (25 - len(str(dati.columns[index]))) + f"{element}")
|
||||||
81
january/task_050122/task_190122.py
Normal file
81
january/task_050122/task_190122.py
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
# Author - Kristiāns Francis Cagulis
|
||||||
|
# Date - 19.01.2022
|
||||||
|
# Title - Classwork
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
from word2number import w2n
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
data = pd.read_csv("auto_imports_mainits.csv")
|
||||||
|
|
||||||
|
# summary = data["normalized-losses"].notnull() # returns boolean
|
||||||
|
# print(data[summary], "\n") # "normalized-losses" is not empty
|
||||||
|
# print(data[~summary]) # inverts all the bits
|
||||||
|
# print(len(data[~summary]))
|
||||||
|
|
||||||
|
data_copy = data.copy()
|
||||||
|
|
||||||
|
# Delete rows with empty spots
|
||||||
|
# print(f"Before erasing: {data_copy.shape}")
|
||||||
|
# print(f"After erasing: {data_copy.dropna().shape}")
|
||||||
|
|
||||||
|
# Delete column
|
||||||
|
# print(f"Before erasing: {data_copy.shape}")
|
||||||
|
del data_copy["normalized-losses"]
|
||||||
|
# print(f"After erasing: {data_copy.shape}")
|
||||||
|
# print(f"Blank spots: {data_copy.isnull().any().sum()}")
|
||||||
|
|
||||||
|
# data_copy2 = data_copy.copy()
|
||||||
|
# print(data_copy2.head())
|
||||||
|
# data_copy2.drop(data_copy2.columns[[0, 1]], axis=1, inplace=True)
|
||||||
|
# print(data_copy2.head())
|
||||||
|
|
||||||
|
dislike = ["N/A", "NA", "--"]
|
||||||
|
data_copy3 = pd.read_csv("auto_imports_mainits.csv", na_values=dislike)
|
||||||
|
|
||||||
|
# Mean
|
||||||
|
# print(data_copy3.iloc[52], "\n")
|
||||||
|
# mean = data_copy3["bore"].mean()
|
||||||
|
# data_copy3["bore"].fillna(mean, inplace=True)
|
||||||
|
# print(data_copy3.iloc[52])
|
||||||
|
|
||||||
|
# Median
|
||||||
|
# print(data_copy3.iloc[53], "\n")
|
||||||
|
# median = data_copy3["bore"].median()
|
||||||
|
# data_copy3["bore"].fillna(median, inplace=True)
|
||||||
|
# print(data_copy3.iloc[53])
|
||||||
|
|
||||||
|
# Mode
|
||||||
|
# print(data_copy3.iloc[60], "\n")
|
||||||
|
# mode = data_copy3["bore"].mode()
|
||||||
|
# data_copy3["bore"].fillna(mode, inplace=True)
|
||||||
|
# print(data_copy3.iloc[60])
|
||||||
|
|
||||||
|
# print(data_copy3.dtypes)
|
||||||
|
|
||||||
|
# data_copy3["curb-weight"] = pd.to_numeric(data_copy3["curb-weight"], errors='coerce')
|
||||||
|
# data_copy3["curb-weight"] = data_copy3["curb-weight"].astype("float64")
|
||||||
|
# print(data_copy3.dtypes)
|
||||||
|
|
||||||
|
# Replaces word written numbers to intigers
|
||||||
|
columns = ["num-of-doors", "num-of-cylinders"]
|
||||||
|
for column in columns:
|
||||||
|
for value in data_copy3[column]:
|
||||||
|
try:
|
||||||
|
data_copy3 = data_copy3.replace(to_replace=value, value=w2n.word_to_num(value))
|
||||||
|
print(type(w2n.word_to_num(value)))
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
print(data_copy3[["num-of-doors", "num-of-cylinders"]])
|
||||||
|
|
||||||
|
# Leaves only columns that contain numbers
|
||||||
|
data_copy4 = data_copy3.copy()
|
||||||
|
for column in data_copy4:
|
||||||
|
if isinstance(data_copy4[column][0], str):
|
||||||
|
del data_copy4[column]
|
||||||
|
print(data_copy4)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
Loading…
Reference in New Issue
Block a user