#import "@preview/fletcher:0.5.7" as fletcher: diagram, edge, node #import "@preview/gentle-clues:1.2.0": * #import "@preview/physica:0.9.5": bra, braket, ket, ketbra #import "@preview/quill:0.6.1": * #import "@preview/quill:0.6.1" as quill: tequila as tq #import "layout.typ": indent-par, project #show: project.with(title: [Quantum Computation Cheatsheet], authors: ( "Kristofers Solo", )) #let distance = $space.quad space.quad$ = Bre-Ket Notation == Ket $ket(psi)$ Represents a column vector for a quantum state. $ ket(psi)=alpha ket(0)+beta ket(1) <==> vec(alpha, beta) $ === Basis states $ ket(0)=vec(1, 0), ket(1)=vec(0, 1) $ == Bra $bra(psi)$ Represents a *conjugate transpose vector (kompleksi saistīts)* (row vector) of $ket(psi)$. $ "If " ket(psi) = vec(alpha, beta) ", then" ket(psi)=(a^* space.quad b^*) $ == Scalar Product $braket(phi, psi)$ Inner product of two states. $ "If " ket(phi) = gamma ket(0)+ delta ket(1) ", then" braket(phi, psi)= gamma^* alpha + delta^* beta $ === Orthogonal states $ braket(phi, psi)=0 $ == Projection $braket(i, psi)$ Amplitude of the basis state $ket(i)$ in $ket(psi)$. For $ket(psi)=alpha ket(0) + beta ket(1) : braket(0, psi)=alpha, psi braket(1, psi)=beta$. Probability of measuring state $ket(i): P(i)=abs(braket(i, psi))^2$ = Fundamentals == Qubit (Kvantu bits) === Basis states $ ket(0)=vec(1, 0), ket(1)=vec(0, 1) $ === Superposition A qubit can be in a linear combination of basis states: $ ket(psi)=alpha ket(0)+ beta ket(1) ", where "alpha, beta in CC $ are probability amplitudes. === Normalization $ abs(alpha)^2 + abs(beta)^2 = 1 $ $abs(alpha)^2$ is the probability of measuring $ket(0)$, $abs(beta)^2$ is the probability of measuring $ket(1)$. === Bloch Sphere Geometric representation of a single qubit state: $ ket(psi)=cos theta/2 ket(0)+ e^(i phi) sin theta/2 ket(1) $ == Measurement (Mērījumi) - Projective measurement in the basis (e.g. computational ${ket(0), ket(1)}$ or Hadamard ${ket(+), ket(-)}$). - If state is $ket(psi)=alpha ket(0) + beta ket(1)$: - Outcome $0$: probability $P(0)=abs(braket(0, psi))^2=abs(alpha)^2$. Post-measurement state: $ket(0)$. - Outcome $1$: probability $P(1)=abs(braket(1, psi))^2=abs(beta)^2$. Post-measurement state: $ket(1)$. - Measurement collapses the superposition (mērījums maina kvantu bitu (observer effect)). === Measurement operators $ M_0=ket(0)bra(0) , M_1 = ket(1)bra(1) \ sum_m M_m^dagger M_m=I $ === Measuring in $ket(+), ket(-)$ basis $ ket(+)=1/sqrt(2)(ket(0)+ket(1)), ket(-)=1/sqrt(2)(ket(0)-ket(1)) $ To measure $ket(0)$ in this basis: $ket(0)=1/sqrt(+)+1/sqrt(2)ket(-)$. $ P(+)=abs(braket(+, 0))^2=1/2, P(-)=abs(braket(-, 1))^2=1/2 $ === Example: $ket(psi)=(1+2i)/sqrt(7)ket(0)+(1-i)/sqrt(7)ket(1)$ $ P(0) & =abs((1+2i)/sqrt(7))^2=(1^2+2^2)/7=5/7 \ P(1) & =abs((1-i)/sqrt(7))^2=(1^2+(-1)^2)/7=2/7 $ #tip[ Sum must be $1$. ] = Single Qubit Unitary Transformations Quantum gates are unitary matrices $U$. $ U U^dagger=U^dagger U=I $ === Properties Linearity $(U(alpha ket(psi_1)+beta ket(psi_2))=alpha U ket(psi_1)+beta U ket(psi_2))$ and preserves vector length. === Matix form If $U ket(0)=a ket(0)+b ket(1))$ and $U ket(1)=c ket(0) + d ket(1)$, then $ U=mat(a, c; b, d) $ Columns (and rows) must be orthonormal vectors: \ $arrow(v_1^*) dot arrow(v_2)=0$ and $abs(arrow(v_1))^2=1$. == Pauli Gates === I (Identity) $ I=mat(1, 0; 0, 1) distance cases( I ket(0)=ket(0), I ket(1)=ket(1) ) $ === X (NOT) Bit flip $ X=mat(0, 1; 1, 0) distance cases( X ket(0)=ket(1), X ket(1)=ket(0) ) $ === Y Gate $ Y=mat(0, -i; i, 0) distance cases( Y ket(0)=-i ket(1), Y ket(1)=i ket(0) ) $ === Z Gate Phase flip $ Z=mat(1, 0; 0, -1) distance cases( Z ket(0) = ket(0), Z ket(1) = -ket(1), ) $ == Hadamard Gate ($H$) Creates superpositions $ H=1/sqrt(2) mat(1, 1; 1, -1) distance cases( H ket(0)=1/sqrt(2) ket(0) + 1/sqrt(2) ket(1), H ket(-1)=1/sqrt(2) ket(0) - 1/sqrt(2) ket(1) ) \ cases( H ket(0)=ket(+), H ket(1)=ket(-) ) distance H H=H^2=I $ == Phase Gates === $S$ Gate $(sqrt(Z))$ $ S= mat(1, 0; 0, i) distance S^2=Z $ === $T$ Gate $(pi/8))$ $ T= mat(1, 0; 0, e^(i pi/4)) distance T^2=S $ == Rotation Gates ($R_n (theta)$) $ R_x (theta)= e^((-i theta X)/2)= mat( cos theta/2, -i sin theta/2; -i sin theta/2, cos theta/2 ) $ $ R_y (theta)= e^((-i theta Y)/2)= mat( cos theta/2, -sin theta/2; sin theta/2, cos theta/2 ) $ $ R_z (theta)= e^((-i theta Z)/2)= mat( e^((-i theta)/2), 0 0, e^((i theta)/2) ) $ #tip[ $R_alpha: cases( R_alpha ket(0):cos alpha ket(0)+sin alpha ket(1), R_alpha ket(1):-sin alpha ket(0)+cos alpha ket(1), )$. This is $R_y(-2 alpha)$.] == Game Compositions Applied right to left. $U V ket(psi)=U(V ket(psi))$. - $H Z H=X$ - $H X H=Z$ == Inverse Tranformation $ U^(-1)=U^dagger $ == Non-Unitary Operations (Not physically realizable as closed system evolution) === Qubit Deletion $ cases( U ket(0) = ket(0), U ket(1) = ket(0) ) $