#import "@preview/fletcher:0.5.7" as fletcher: diagram, edge, node #import "@preview/gentle-clues:1.2.0": * #import "@preview/physica:0.9.5": bra, braket, ket, ketbra #import "@preview/quill:0.6.1": * #import "@preview/quill:0.6.1" as quill: tequila as tq #import "layout.typ": indent-par, project #show: project.with(title: [Quantum Computation Cheatsheet], authors: ( "Kristofers Solo", )) = Bre-Ket Notation == Ket $ket(psi)$ Represents a column vector for a quantum state. $ ket(psi)=alpha ket(0)+beta ket(1) <==> vec(alpha, beta) $ === Basis states $ ket(0)=vec(1, 0), ket(1)=vec(0, 1) $ == Bra $bra(psi)$ Represents a *conjugate transpose vector (kompleksi saistīts)* (row vector) of $ket(psi)$. $ "If " ket(psi) = vec(alpha, beta) ", then" ket(psi)=(a^* space.quad b^*) $ == Scalar Product $braket(phi, psi)$ Inner product of two states. $ "If " ket(phi) = gamma ket(0)+ delta ket(1) ", then" braket(phi, psi)= gamma^* alpha + delta^* beta $ === Orthogonal states $ braket(phi, psi)=0 $ == Projection $braket(i, psi)$ Amplitude of the basis state $ket(i)$ in $ket(psi)$. For $ket(psi)=alpha ket(0) + beta ket(1) : braket(0, psi)=alpha, psi braket(1, psi)=beta$. Probability of measuring state $ket(i): P(i)=abs(braket(i, psi))^2$ = Fundamentals == Qubit (Kvantu bits) === Basis states $ ket(0)=vec(1, 0), ket(1)=vec(0, 1) $ === Superposition A qubit can be in a linear combination of basis states: $ ket(psi)=alpha ket(0)+ beta ket(1) ", where "alpha, beta in CC $ are probability amplitudes. === Normalization $ abs(alpha)^2 + abs(beta)^2 = 1 $ $abs(alpha)^2$ is the probability of measuring $ket(0)$, $abs(beta)^2$ is the probability of measuring $ket(1)$. === Bloch Sphere Geometric representation of a single qubit state: $ ket(psi)=cos theta/2 ket(0)+ e^(i phi) sin theta/2 ket(1) $ == Measurement (Mērījumi) - Projective measurement in the basis (e.g. computational ${ket(0), ket(1)}$ or Hadamard ${ket(+), ket(-)}$). - If state is $ket(psi)=alpha ket(0) + beta ket(1)$: - Outcome $0$: probability $P(0)=abs(braket(0, psi))^2=abs(alpha)^2$. Post-measurement state: $ket(0)$. - Outcome $1$: probability $P(1)=abs(braket(1, psi))^2=abs(beta)^2$. Post-measurement state: $ket(1)$. - Measurement collapses the superposition (mērījums maina kvantu bitu (observer effect)). === Measurement operators $ M_0=ket(0)bra(0) , M_1 = ket(1)bra(1) \ sum_m M_m^dagger M_m=I $ === Measuring in $ket(+), ket(-)$ basis $ ket(+)=1/sqrt(2)(ket(0)+ket(1)), ket(-)=1/sqrt(2)(ket(0)-ket(1)) $ To measure $ket(0)$ in this basis: $ket(0)=1/sqrt(+)+1/sqrt(2)ket(-)$. $ P(+)=abs(braket(+, 0))^2=1/2, P(-)=abs(braket(-, 1))^2=1/2 $ === Example: $ket(psi)=(1+2i)/sqrt(7)ket(0)+(1-i)/sqrt(7)ket(1)$ $ P(0) & =abs((1+2i)/sqrt(7))^2=(1^2+2^2)/7=5/7 \ P(1) & =abs((1-i)/sqrt(7))^2=(1^2+(-1)^2)/7=2/7 $ #tip[ Sum must be $1$. ]