feat: add advanced topics

This commit is contained in:
Kristofers Solo 2025-06-05 19:13:26 +03:00
parent 716373be8c
commit c37a749776
Signed by: kristoferssolo
GPG Key ID: 8687F2D3EEE6F0ED

View File

@ -521,3 +521,62 @@ $
+ Measure first register to get string $y$ such that\ $y dot s = 0 (mod 2)$. + Measure first register to get string $y$ such that\ $y dot s = 0 (mod 2)$.
+ Repeat $n-1$ times to get $n-1$ linearly independent equations for $s$. + Repeat $n-1$ times to get $n-1$ linearly independent equations for $s$.
Solve the system to find $s$. Solve the system to find $s$.
= Advanced Topics
== Density Matrices (Blīvuma matricas $rho$)
- Describes quantum states, including mixed states (statistical ensemble of pure states).
- Pure state $ket(psi): rho=ket(psi)bra(psi)$.
- Mixed state: $rho = sum_i p_i ket(psi_i)bra(psi_i)$, where $p_i$ are probabilities, $sum p_i = 1$.
- Properties:
- $T r (rho)=1$.
- $rho^dagger=rho$ (Hermitian).
- $rho$ is positive semi-definite (eigenvalues $>=0$).
- Evolution: $rho'=U rho U^dagger$.
- Measurement: Probability of outcome $m: P(m) =T r(M_m^dagger M_m rho)$.
Post-measurement state: $(M_m rho M_m^dagger)/(T r (M_m rho M_m^dagger))$
- Purity: $T r(rho)^2<=1$. $T r(rho)^2=1$ if $rho$ is a pure state.
- Partial Trace ($T r_B$): If $rho_(A B)$ describes system $A B$,
$rho_A=T r_B(rho_(A B))$ describes system $A$.
== Quantum Cryptography
=== BB84 Protocol
+ Alice chooses random bits and random bases (rectilinear $+$ or diagonal
$times$) for each bit.
- $0 -->^+ ket(0), 1 -->^+ ket(1)$
- $0 -->^times ket(+), 1 -->^times ket(-)$
+ Alice sends qubits to Bob.
+ Bob chooses random bases to measure each qubit.
+ Alice and Bob publicly announce their basis choices.
They keep bits where bases matched (sifted key).
+ They sacrifice a portion of the sifted key to estimate error rate (detect
eavesdropping). If error rate is low, remaining bits form the secret key.
=== Security
Eavesdropping (Eve) introduces errors because she doesn't know Alice's bases and
her measurements disturb the states.
== Quantum Error Correction
Protects quantum states from decoherence and errors.
=== 3-Qubit Bit Flip Code
- Encoding: $ket(0)->ket(0_L)=ket(000), ket(1)->ket(1_L)=ket(11)$.
- Error detection: Measure stabilizers $Z_1 Z_2$, $Z_2 Z_3$.
- Correction: If $Z_1 Z_2$ flips, error on $Q 1$ or $Q 2$.
If $Z_2 Z_3$ flips, error on $Q 2$ or $Q 3$.
(e.g., if $Z_1 Z_2 = -1$, $Z_2 Z_3 = +1 ==>$ error on $Q 1$, apply $X_1$).
=== 3-Qubit Phase Flip Code
- Encoding: $ket(0)->ket(+_L)=ket(+++)$,\ $ket(1)->ket(-_L)=ket(---)$.
(Hadamard basis of bit flip code).
- Error detection: Measure stabilizers $X_1 X_2$, $X_2 X_3$.
=== Shor's 9-Qubit Code
Corrects arbitrary single-qubit errors (bit flips, phase flips, or both).
Concatenates bit-flip and phase-flip codes.
$
ket(0)->1/(2sqrt(2))(ket(000)+ket(111))(ket(000)+ket(111))(ket(000)+ket(111)) \
ket(1)->1/(2sqrt(2))(ket(000)-ket(111))(ket(000)-ket(111))(ket(000)-ket(111)) \
$
- Stabilizer Codes: A general framework for QEC. Code space is the simultaneous
$+1$ eigenspace of a set of commuting Pauli operators (stabilizers).