#!/usr/bin/env python import platform import subprocess from pathlib import Path import matplotlib.pyplot as plt import numpy as np import pandas as pd from loguru import logger from matplotlib.backends.backend_pdf import PdfPages logger.add( Path("logs", "data.log"), format="{time} | {level} | {message}", level="INFO", rotation="1 MB", compression="zip", ) BASE_PATH = Path(__file__).parent WIND_GUSTS_PATH = BASE_PATH.joinpath("data", "vejaAtrumsBrazmas.xlsx") WIND_SPEED_PATH = BASE_PATH.joinpath("data", "vejaAtrumsFaktiskais.xlsx") AIR_TEMP_PATH = BASE_PATH.joinpath("data", "gaisaTemperatura2022.xlsx") PDF_PATH = BASE_PATH.joinpath("plots.pdf") BLUE = "#1f77b4" ORANGE = "#ff7f0e" BLACK = "#000000" @logger.catch def read_data(path: Path) -> pd.DataFrame: dataframe = pd.read_excel(path, parse_dates=["Datums"], index_col="Datums", date_format="%d.%m.%Y") logger.info(f"Read data from {path}") return dataframe @logger.catch def create_bar_chart() -> plt.Figure: df_avg: pd.Series = read_data(WIND_SPEED_PATH).mean(axis=1) df_max: pd.Series = read_data(WIND_GUSTS_PATH).max(axis=1) - df_avg df_combined: pd.DataFrame = pd.concat( [df_avg, df_max], axis=1, ) fig, ax = plt.subplots(figsize=(12, 8)) df_combined.columns = ["Vidējais", "Maksimālais"] df_combined.plot.bar( stacked=True, figsize=(12, 8), color=[ORANGE, BLUE], width=0.6, ax=ax, ) date_format = df_combined.index.strftime("%d.%m.%Y") ax.set_xticks(np.arange(len(date_format))) ax.set_xticklabels(date_format, rotation=45) ax.set_yticks(np.arange(0, df_combined.max().max() + 2.5, 2.5)) ax.set_title("Vidējais un maksimālais vēja ātrums 2023. gada augustā") ax.set_xlabel("Mērījumu Datums") ax.set_ylabel("Vēja ātrums (m/s)") logger.info("Created bar chart") return fig SEASONS: dict[int, str] = { 1: "Ziema", 2: "Pavasaris", 3: "Vasara", 4: "Rudens", } @logger.catch def create_box_plot() -> plt.Figure: df: pd.DataFrame = read_data(AIR_TEMP_PATH) df["Season"] = df.index.month % 12 // 3 + 1 df["Season"] = df["Season"].map(SEASONS) df["Average"] = df.iloc[:, 0:24].mean(axis=1) seasonal_data: list[pd.Series] = [df[df["Season"] == season]["Average"] for season in SEASONS.values()] fig, ax = plt.subplots(figsize=(12, 8)) ax.boxplot( seasonal_data, labels=SEASONS.values(), showfliers=True, boxprops=dict(facecolor=BLUE), # box medianprops=dict(color=ORANGE), # median line whiskerprops=dict(color=BLACK), # whiskers (vertical line between box and min/max) patch_artist=True, widths=0.4, ) min_value: float = np.floor(df["Average"].min() / 5) * 5 max_value: float = np.ceil(df["Average"].max() / 5) * 5 tick_step: int = 5 ax.set_yticks(np.arange(min_value, max_value, tick_step)) ax.set_title("Gaisa temperatūra Rīgā četros gadalaikos") ax.set_ylabel("Gaisa temperatūra (Celsija grādos)") ax.set_xlabel("") logger.info("Created box plot") return fig @logger.catch def open_pdf(pdf_path: Path) -> None: logger.info(f"Opening {pdf_path}") system = platform.system().lower() if system == "linux": subprocess.run(["xdg-open", pdf_path], check=True) elif system == "windows": subprocess.run(["start", "", pdf_path], check=True) elif system == "darwin": # macOS subprocess.run(["open", pdf_path], check=True) else: logger.warning(f"Unsupported platform: {system}. Please open the PDF manually.") @logger.catch def main() -> None: with PdfPages(PDF_PATH) as pdf: fig1 = create_bar_chart() pdf.savefig(fig1) plt.close(fig1) fig2 = create_box_plot() pdf.savefig(fig2) plt.close(fig2) try: open_pdf(PDF_PATH) except Exception as e: logger.error(e) logger.warning("Something went wrong while opening the PDF. Please open it manually.") if __name__ == "__main__": main()