calculate mean temp

This commit is contained in:
Kristofers Solo 2023-12-25 18:48:20 +02:00
parent c1d4a4b796
commit 141faba04f

70
main.py
View File

@ -3,7 +3,6 @@
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from loguru import logger
@ -21,25 +20,16 @@ WIND_GUSTS_PATH = BASE_PATH.joinpath("data", "vejaAtrumsBrazmas.xlsx")
WIND_SPEED_PATH = BASE_PATH.joinpath("data", "vejaAtrumsFaktiskais.xlsx")
AIR_TEMP_PATH = BASE_PATH.joinpath("data", "gaisaTemperatura2022.xlsx")
BLUE = "#1f77b4"
ORANGE = "#ff7f0e"
BLACK = "#000000"
def read_data(path: Path) -> pd.DataFrame:
dataframe = pd.read_excel(path, date_parser="Datums", index_col="Datums")
dataframe = pd.read_excel(path, parse_dates=["Datums"], index_col="Datums", date_format="%d.%m.%Y")
return dataframe
def get_season(month: int) -> str | None:
if month in [12, 1, 2]:
return "Ziema"
elif month in [3, 4, 5]:
return "Pavasaris"
elif month in [6, 7, 8]:
return "Vasara"
elif month in [9, 10, 11]:
return "Rudens"
else:
return None
def bar_chart() -> None:
df_avg = read_data(WIND_SPEED_PATH).mean(axis=1)
df_max = read_data(WIND_GUSTS_PATH).max(axis=1) - df_avg
@ -50,10 +40,10 @@ def bar_chart() -> None:
)
df_combined.columns = ["Vidējais", "Maksimālais"]
df_combined.plot.bar(stacked=True, figsize=(12, 8), color=["#ff7f0e", "#1f77b4"], width=0.6)
df_combined.plot.bar(stacked=True, figsize=(12, 8), color=[ORANGE, BLUE], width=0.6)
plt.yticks(np.arange(0, df_combined.max().max() + 2.5, 2.5))
plt.xticks(rotation=45)
plt.xticks(rotation=45) # FIX: don't display time
plt.title("Vidējais un maksimālais vēja ātrums 2023. gada augustā")
plt.xlabel("Mērījumu Datums")
@ -71,14 +61,56 @@ SEASONS = {
def box_plot() -> None:
df = read_data(AIR_TEMP_PATH)
df.index = pd.to_datetime(df.index, format="%d.%m.%Y")
df["Season"] = df.index.month % 12 // 3 + 1
df["Season"] = df["Season"].map(SEASONS)
df["Average"] = df.iloc[:, 0:24].mean(axis=1)
df_melted = pd.melt(df, id_vars=["Season"], value_name="Temperature", var_name="Time") # FIX: should be average temperature
df_melted["Season"] = pd.Categorical(df_melted["Season"], categories=SEASONS.values(), ordered=True)
_, ax = plt.subplots(figsize=(12, 8))
box_props = dict(facecolor=BLUE) # box
median_props = dict(color=ORANGE) # median line
whisker_props = dict(color=BLACK) # whiskers (vertical line beween box and min/max)
width = 0.4
df_melted[df_melted["Season"] == "Rudens"].boxplot(
by="Season",
ax=ax,
grid=False,
showfliers=0.5,
boxprops=box_props,
medianprops=median_props,
whiskerprops=whisker_props,
patch_artist=True,
widths=width,
)
df_melted[df_melted["Season"] != "Rudens"].boxplot(
by="Season",
ax=ax,
grid=False,
showfliers=False,
boxprops=box_props,
medianprops=median_props,
whiskerprops=whisker_props,
patch_artist=True,
widths=width,
)
min_value = np.floor(df_melted["Temperature"].min() / 5) * 5
max_value = np.ceil(df_melted["Temperature"].max() / 5) * 5
tick_step = 5
plt.yticks(np.arange(min_value, max_value, tick_step))
plt.title("Gaisa temperatūra Rīgā četros gadalaikos")
plt.suptitle("")
plt.ylabel("Gaisa temperatūra (Celsija grādos)")
# plt.show()
plt.xlabel("")
plt.show()
@logger.catch